(©Copyright 2020

Daniel Campos

Explorations In Curriculum Learning Methods For Training
Language Models

Daniel Campos

A thesis
submitted in partial fulfillment of the
requirements for the degree of

Master of Science

University of Washington

2020

Committee:

Shane Steinert-Threlkeld, Chair

Emma Strubell

Program Authorized to Offer Degree:
Department of Linguistics

University of Washington

Abstract

Explorations In Curriculum Learning Methods For Training Language Models

Daniel Campos

Chair of the Supervisory Committee:
Assistant Professor Shane Steinert-Threlkeld
Department of Linguistics

Understanding language depending on the context of its usage has always been one of the
core goals of natural language processing. Recently, contextual word representations created
by language models like ELMo, BERT, ELECTRA, and RoBERTA have provided robust
representations of natural language which serve as the language understanding component
for a diverse range of downstream tasks like information retrieval, question answering, and
information extraction. Curriculum learning is a method that employs a structured train-
ing regime instead of the traditional random sampling. Research areas like computer vision
and machine translation have used curriculum learning methods in model training to im-
prove model training speed and model performance. While language models have proven
transformational for the natural language processing community, these models have proven
expensive, energy-intensive, and challenging to train, which has inspired researchers to ex-
plore new training methods. In this thesis, we explore the effect of curriculum learning in the
training of language models. Using wikitext-2 and wikitext-103 textual datasets and evaluat-
ing word representation transfer learning on the GLUE Benchmark, we find that curriculum
learning methods produce models that outperform their traditionally trained counterparts
when the training corpus is small, but as the training corpora scale, curriculum methods

become less effective than traditional stochastic sampling.

TABLE OF CONTENTS

Page
[List of Figures| iii
[List of Tables| iv
... iv
[Chapter 1: Introduction| 1
L1 OVerviewl. e e 2
(1.2 Curriculum Learning| 2
(1.3 Representing Language] oL 2
(1.4 Goals and Challenges| 4
(1.5 Contributions and Findings| 5
(1.6 Structure of This Dissertationl 6
(1.7 Statement of Originality|, 6
[Chapter 2: Prior Workl
1 Architecture
[2.2 Learning Methods|. 9
2.3 Language Modeling| 12
2.4 Evaluationl 17
[Chapter 3: Research Approachl oo 20
[3.1 Experiment Structure{. 20
3.2 Curriculum Construction Methods|. 23
(3.3 Model Training and Evaluation| 29
[Chapter 4: Results 31
4.1 Corpus Replacement Style Curricula] 31

4.3 Discussionl 41
[Chapter 5: Conclusion| 47
[Chapter 6: Future Workl 48
Bibliography| 49
[Appendix A: Experimental Results) 58

[A.1 Corpus Replacement Style| 58

[A.2 Competence Based Curriculum| 58

i

LIST OF FIGURES

Figure Number

Page

A1

Validation perplexity of baselines and replacement methods trained on wikitext-

2 measured every epoch.| oL

32

A2

Validation perplexity of baselines and replacement methods trained on wikitext-

103 measured every epoch.| oo

33

A3

Validation perplexity ot each curriculum trained on line based wikitext-2 mea-

sured every 100 batches.|

36

4

Validation perplexity of each curriculum trained on sentence based wikitext-2

measured every 100 batches.| oL

37

A5

Validation perplexity of each curriculum trained on line based wikitext-103

measured every 100 batches.|

39

6

Validation perplexity of each curriculum trained on line based wikitext-103

measured every 100 batches. Unigram, bigram, and baseline model perfor-

mance removed improved interpretation|.

A7

Validation perplexity ot each curriculum trained on sentence based wikitext-

103 measured every 100 batches.|. L.

A1

Validation perplexity of each curriculum trained on sentence based wikitext-

103 measured every 100 batches.|. L.

A2

Validation perplexity of each curriculum trained on line based wikitext-103

measured every 100 batches. Bigram performance is removed for ease of in-

terpretation. e e

A3

Validation perplexity of each curriculum trained on line based wikitext-103

measured every 100 batches. Bigram and Baseline performance is removed

for ease of interpretation.|.

A

Validation perplexity of each curriculum trained on line based wikitext-103

measured every 100 batches. Bigram, trigram, and Baseline performance is

removed for ease of interpretation.|.o

A5

Validation perplexity of each curriculum trained on line based wikitext-103

measured every 100 batches. Unigram, Bigram, Trigram and Baseline perfor-

mance 1s removed for ease of interpretation.|

1ii

LIST OF TABLES

Table Number Page
[3.1 Training Corpus details|. 23
[3.2 Vocabulary size per epoch| 24
4.1 GLUE results for competence replacement methods and baselines trained on |

[wikitext-2.0 e e 34
4.2 GLUE results for competence based curricula methods on trained on wikitext-2.| 38
4.3 GLUE results for Competence based curricula methods on trained on wikitext- |

L T03] . . 42
[A.1 Validation perplexity ot baselines and replacement methods measured every |

| epoch.| 58
[A.2 Validation perplexity of each curriculum trained on line based wikitext-2 mea- |

| sured every 100 batches.| oo o 59
[A.3 Validation perplexity of each curriculum trained on sentence based wikitext-2 |

[measured every 100 batches.|o 60
[A.4 Validation perplexity of each curriculum trained on line based wikitext-103 |

| measured every 100 batches. Batches 0-5000.. 61
[A.5 Validation perplexity of each curriculum trained on line based wikitext-103 |

| measured every 100 batches. Batches 5100-10000. 62
[A.6 Validation perplexity of each curriculum trained on line based wikitext-103 |

| measured every 100 batches. Batches 10100-12000.| 63
[A.7 Validation perplexity of each curriculum trained on sentence based wikitext- |

| 103 measured every 100 batches. First 5500 batches.| 64
[A.8 Validation perplexity ot each curriculum trained on sentence based wikitext- |

| 103 measured every 100 batches. Batches 5600-10900. 65
[A.9 Validation perplexity of each curriculum trained on sentence based wikitext- |

| 103 measured every 100 batches. Batches 11100-16500.f 66
[A.10 Validation perplexity of each curriculum trained on sentence based wikitext- |

[103 measured every 100 batches. Batches 16600-18900.| 67

v

GLOSSARY

AUTO ENCODING (AE): A neural network which is used to learn an efficient representation
of underlying data distribution by leveraging dimensional reduction to ignore noise in
a data. In Language models this typically is implemented by having the network learn
to reconstruct a corrupted input.

AUTO REGRESSIVE (AR): A neural network which is used to learn an efficient represen-
tation of underlying data distribution by leveraging conditional probability to predict
some input based on previous input. In Language models this typically is implemented
by having the network learn to predict the next token in a sequence.

COMPETENCE BASED CURRICULUM (CBC): A method of curriculum learning where the
samples in the training data are assigned a notion of difficulty and the model training
on this data is gradually allowed to sample from a progressively more difficult dataset.

CUMULATIVE DENSITY FUNCTION (CDF): A statistical method used for modeling the dis-
tribution of some underlying data using a mathematical function and probability den-
sity.

CURRICULUM LEARNING (CL): A machine learning training method which introduces
structure into the training regime with the goal of increasing model performance or
sample efficiency.

CONVOLUTIONAL NEURAL NETWORK (CNN): A type of artificial neuron which applies
a convolution to certain portion of input data to extract a stronger signal which is
commonly used in computer vision.

CORPUS REPLACEMENT STYLE (CRS): A method of curriculum learning where less com-
mon parts of the corpus are replaced to simplify the training data. This method is run
independent of model training and is reusable across models which makes it computa-
tionally efficient.

COMPUTER VISION (CV): A field of research which is focused on producing methods
which computers can leverage to understand visual inputs.

DEPENDENCY PARSE (DEP): A method for analyzing the grammatical structure of a sen-
tence and establishing relation between words by creating a tree structure which rep-
resents how words modify other words.

DEEP NEURAL NETWORK (DNN): A connection of artificial neurons which are arranged in
consecutive layers which is commonly used in machine learning to learn some underlying
function in a target domain.

GENERAL LINGUISTIC UNDERSTANDING EVALUATION BENCHMARK (GLUE): A collection
of 11 natural language tasks which is used to evaluate how well a model captures specific
aspects of natural language.

INFORMATION RETRIEVAL (IR): A field of research which is focused on the discovery of
documents, image, web-pages, etc. based on user intent.

INFORMATION EXTRACTION (IE): A field of research which is focused on extracting infor-
mation from many sources and organizing it in a knowledge-base or knowledge-graph
and the application of said representations in downstream tasks.

LANGUAGE MODEL (LM): A language representation gained by modeling the language in
a corpus using statistical methods such as conditional probability.

LANGUAGE REPRESENTATION (LR): A form of representing the underlying properties of
spoken or written language which is usually employed to allow a system to use some
form of natural language.

LONG SHORT TERM MEMORY (LSTM): A type of artificial neuron for neural networks
which has a trainable parameter which controls what information is forgotten between
states.

MASKED LANGUAGE MODELING (MLM): An auto encoding language model training ob-
jective which masks some portion of a textual input which language model must re-
construct.

MACHINE TRANSLATION (MT): A sub-field of Natural Language Processing research which
focuses on building systems which can translate inputs from a source language to a
target language.

NATURAL LANGUAGE PROCESSING (NLP): A field of research which is focused on pro-
cessing, understanding, and interacting with language as used by humans around the
globe.

vi

NEURAL MACHINE TRANSLATION (NMT): A sub-field of Machine Translation which lever-
ages Neural Networks to create systems to translate inputs.

NEURAL NETWORK (NN): A connection of artificial neurons which is commonly used in
machine learning to learn some underlying function in a target domain.

NEXT SENTENCE PREDICTION (NSP): An language model training objective where a lan-
guage model must predict if input sentences are sequentially related in a training
COTpus.

NEXT WORD PREDICTION (NWP): An auto regressive language model training objective
where a model must predict the next token in a sequence give some preceding set of
tokens.

PART OF SPEECH (POS): A categorization of tokens based on the syntactic role which
they serve.

RECURRENT NEURAL NETWORKS (RNN): A type of artificial neuron for neural networks
which contains a hidden state which is used to represent a broader input.

STATE-OF-THE-ART (SOTA): A denotation which defines when a system has the best per-
formance on a given task given some evaluation metric.

TRANSFER LEARNING (TL): A machine learning method which applies the representation
learned in training of one target task to improve performance on a different but related

task.

QUESTION ANSWERING (QA): A field of research which focuses on answering questions
given some input document, usually a textual document.

vil

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to his family, his Advisor Shane

Steinert-Threlkeld, The University of Washington, The City of Seattle, and coffee.

viil

DEDICATION

To my wife, Zoe.

1X

Chapter 1
INTRODUCTION

The ability to understand language has long been a fascination for computer scientists
worldwide. Early systems like ELIZA [89] were designed to interact with humans through
verbal communication. Despite being rudimentary and simple, these systems quickly caught
the world’s attention and inspired countless researchers to hopefully one day understand and
emulate language. In the decades since, researchers have grown to understand fundamental
concepts about language structure and how best to model it. Creating systems that can
understand language and preserve its meaning in downstream tasks has long focused on the
Natural Language Processing (NLP) community. Leveraging deep neural networks (DNN),
researchers have created language representations (LR) that seek to represent many of the
nuances of human language. These methods have revolutionized nearly every system that
works with human language at a pace that seems to be getting faster and faster. Despite
their impressive performance, these models are difficult and expensive to create, recreate,
and deploy. We will explore whether the use of curriculum learning (CL) can improve model
training and model accuracy.

In the remainder of this chapter, we first briefly describe the problem we want to tackle and
how we will address these problems in Section [I.I} Then, we give a brief overview of CL and
LR in Section [I.2] and Section [I.3] respectively. We briefly discuss this dissertation’s goals
and challenges in Section [[.4] We then summarize the contributions of this dissertation in
Section [I.5] We then provide a brief outline of the Dissertation structure in Section [I.6

before presenting our statement of originality in Section [1.7]

1.1 Overview

This dissertation addresses the effect of Curriculum Learning (CL) methods on Language
Models (LM). The term CL refers to a training procedure where the training data for a
machine-learned method is constructed with a deliberately assembled order with the goal of
steering training to a more optimal solution sooner. Usually, CL methods use a heuristic
to assign a difficulty score to each example and then gradually increase the training data’s
difficulty. The term LM refers to determining the probability for a given text window.
Language modeling can be used to train a Neural Network (NN) to understand language and
represent language for downstream Natural Language Processing (NLP) tasks like Question

Answering (QA) and Information Retrieval (IR). In this dissertation, we will explore the

effect CL methods have on LMs.
1.2 Curriculum Learning

Curricula have long been part of the way humans learn. In our schooling, instructors assem-
ble information and instruction in a way that allows students to learn foundations and more
straightforward concepts before they move onto difficult concepts. In traditional machine
learning, for each step of the network training, a portion of the training data is randomly
sampled. Unlike students in school, networks must learn to understand difficult and sim-
ple concepts at the same time. There are many formalizations and implementations for
curriculum-like methodologies in machine learning, but for this dissertation, we will build on
the neural network focused method introduced by Bengio et al., 2009 [4]. In their formaliza-
tion, curriculum learning is a method for altering the training data distribution to allow the

network to more straightforward concepts before difficult concepts.
1.3 Representing Language

In the frame of language understanding, researchers have long focused on representing all the

information that text represents in a way that can be used by other systems. Researchers

have explored human-curated representations like WordNet [56] and statistical methods to
represent corpora [45]. More recently, statistical methods have tried to produce vector space
models where words are represented by a set of vectors in an N-dimensional space. In the
early 2010s, methods like Word2Vec [55], and GloVe [59] were introduced, and the broader
NLP community found great leverage in vector-based representations of language. Since
these word representations mapped each word to a lower-dimensional numeric representa-
tion, systems could now take advantage of the closeness of words via methods like cosine
similarity. Moreover, these vector representations of words proved to be a powerful method
to represent language for many downstream tasks like: Information Retrieval [68], Question
Answering [58], Sentiment Analysis [97], Machine Translation [99], etc.

These fixed word vectors drove incredible improvement and research across many fields, but
since representations focused on word-level vector values, systems could not represent words
in the context they occur. Since these context-independent word representations cannot
differentiate between usages, at best each word representation is the average of all of its dif-
ferent uses. Context is particularly essential for words with multiple meanings but the same
surface form like fly. The representation is the same if the context was dealing with an insect
(There is a fly in my soup!), an action (I want to fly away!), or a description of personal
style (You sure look fly!). To expand word representation out of discrete words, researchers
explored methods like having multiple word vectors for each meaning of a word [34], sentence
vectors [40], paragraph vectors [44], Gaussian mixtures [I], and sub-word vectors [7]. These
methods seek to improve models’ ability to capture expressive semantic information and
perform better in situations where previous models failed. While these techniques provided
incremental improvements, they all continued to lack a robust way to represent sentences
outside of the original training corpus, and minor changes in sentence structure could have
a large effect on the vector representation.

In explorations on improving word representations, researchers used LM to learn contextual
word representations. Language modeling is a well-defined NLP problem that aims to model

a statistical distribution of words in a sentence to form a prediction about the next word.

Large DNN with Sesame Street-inspired names [61] [19] [78] have leveraged language mod-
eling to produce LR that enable what could seem like a never-ending stream of new state
of the art (SOTA) models on many NLP problems. The success of these models has caused
what seems to be a flywheel of new LRs with new implementations like KnowBERT [61],
RoBERTa [50], AIBERT [43], ELECTRA [13], and BART [47] each of which produced a
gradually improvement.

While these deep learning-based LMs have shown to be excellent methods to enable language
understanding in many tasks, the ability to train these models is becoming increasingly com-
putationally expensive [77]. The research in new LMs has been dominated by large research
labs with multi-million dollar budgets and vast propriety corpora because it has been shown
that model performance is closely tied to the size of training data, model size, and compute
used to train [38]. Since gains provided by scaling have continue to hold, the focus on the
community has not been on the application of alternative learning methodologies to the

established and successful architecture.
1.4 Goals and Challenges

The goal of this dissertation is to explore how CL training methods affect LMs. First, we
explore strategies for evaluating the difficulty of a sentence or a line of text. Next, using
difficulty scores, we then explore how structured training regimes affect model performance.
Model performance will be evaluated by perplexity on the training data and performance on
a transfer learning task. Model perplexity is an intrinsic evaluation which use to understand

loss where e is Euler’s number and loss

how good a language model is and model perplexity is e
is the model loss over the dataset. A transfer learning task when a model is applied to a novel
task which is different to the original training task. The original training task is commonly
called pre-training where as the transfer task is called fine-tuning. This dissertation’s final
goal is to evaluate the effect that various CLL methods have on language modeling, which we

would seek to apply to the overall architecture and size of LMs.

This dissertation’s main challenge is to scope the language model experimentation to allow

us to perform the broadest and most representative experiments. Doing an exhaustive search
of effects on many language models will prove to be computationally prohibitive, and thus
scope will be limited. Ensuring our work is representative of variations in model size, and

dataset size will also be challenging.
1.5 Contributions and Findings

Our findings are as follows:

LM performance as measured by perplexity on the training corpus is not always a

predictive measure of transfer learning performance.

Using CL, it is possible to produce better contextual word representations on small

corpora when compared to non-CL methods.

As corpus size scales, CL methods produce worse contextual representations than non-

CL methods.

A random curriculum in which the structure of the training regime is random can be

just as effective as linguistically motivated methods.
Our contributions are as follows:

e We implement two curriculum learning methods specifically for language modeling and

show that the methods can be useful for specific training constrains.

e We introduce a methodology for training language models using sampling with replace-

ment and produce a thorough evaluation of effects.

e We produce a comparison of line and sentence based LM training methodologies show-

ing that despite inherent differences in batch size there are no substantial improvement

with either mechanism. Since sentence base methods are more computationally inef-
ficient, this our experiments provide support for continued utilization of line based

training.
1.6 Structure of This Dissertation

In Chapter [2], we present the background material in language modeling, CL, popular Neural
Network architectures, and methods for evaluating LMs. We give a detailed and technical
introduction to CL and discuss some recent applications in the NLP domain. We introduce
the concept of language modeling, describe various methodological advances and improve-
ments discovered over time, and contrast multiple implementations. We will also provide
a brief introduction to large LMs’ effects and why focusing on model training efficiency is
essential. Finally, we introduce some of the most popular methods for evaluating language
modeling along with the datasets and frameworks we will use for our experiment.

In Chapter [3, we provide a detailed explanation of our experimental setup. We propose
two curriculum learning strategies building on prior work and explain how we implemented
these strategies and how we evaluate the effectiveness. In [we discuss the results of our
experiments along with a comprehensive analysis of the impact our various methodologies
had on model performance. In Chapter [5, we conclude this dissertation. In Chapter [6] we

discuss future work.
1.7 Statement of Originality

I declare that this dissertation was composed by myself and that the work it presents is my

own, except where otherwise stated.

Chapter 2
PRIOR WORK

In the previous chapter, we briefly introduced the basic ideas of CL and LMs. In this
chapter, we provide a fuller treatment of these areas. In particular, in Section [2.1], we describe
the building blocks many language models use. Then, in Section 2.2, we give a technical
overview of CL methodology focused on its implementations in Machine Translation. In
Section [2.3] we provide a technical overview of LMs concentrating on how many current
systems have structured the problem and the effect various implementations have on down-
stream performance. Finally, in Section [2.4] we introduce a suite of evaluation frameworks

that have become the standard for understanding the quality of LMs.
2.1 Architecture

In this section, we first briefly review of neural networks in NLP in Section so as to
obtain insight into how system architecture can effect downstream tasks. Then, in Section
2.1.2| we introduce Long Short Term Memory (LSTM) [30] and describe how it works. In
Section 2.1.3 we introduce the Transformer [84] and briefly discuss how it differs from LSTM.

2.1.1 Neural Network in NLP

In the last few decades, neural networks have provided language researchers with an effective
method of building models that represent the complex phenomena associated with language.
In NLP, Recurrent Neural Networks (RNN) are popular building blocks because they can
retrain contextual information from previous states. While useful, RNNs are limited in their
ability to represent a full sequence by their short-term memory. When presented with long

sequences of input, the amount of information needed to represent the total input and how

individual components relate grows. Since this state is limited in size as sequences get more
prolonged, less context about particular parts of the sequence is kept in the hidden state.
The slow loss of prior input’s information can be incredibly impactful for for nuances of
language like agreement on verges and coreference, which can be many sentences apart.
Besides issues in representing inputs with large context windows, RNNs suffer from what is
known as the vanishing gradient problem [29]. The vanishing gradient problem focuses on
how, when training RNNs, we must update the weights of previous hidden states, but as we
do so, their gradients get smaller and smaller. Eventually, the gradient on earlier weights
is so small that it practically vanishes, and older weights are not updated. To address this
shortcoming and improve modeling long term dependencies architectures like LSTM and the

Transformer were introduced.

2.1.2 Long Short Term Memory (LSTM)

The LSTM was proposed by Hochreiter et al., 1997 [30] as a neural method that was better
suited to avoid vanishing gradients. LSTMs have a gating mechanism that regulates the
flow of information from previous states into the current state. What makes the LSTM
unique is that it has forget gates that are trainable parameters which choose what infor-
mation from earlier parts of the input is forgotten. Using these gates, LSTMs can retain
relevant information even with large input sizes. Since LSTMs excel at data where their long
term dependencies, they have revolutionized the world of time-series prediction [69], speech

recognition [27], and neural machine translation (NMT) [35] to name a few.

2.1.8 Transformer

The Transformer is a neural system first proposed by Vaswani et al., 2017 [84] as a system for
NMT. The transformer block introduced a way to move from RNNs to an architecture that
focuses on the interaction between units in the input data. Attention is a method that selects
what portions of the input are related to each other. Instead of keeping a global state like

an RNN, Transformers focus on distilling what input items are attended to by other parts

of the data. Attention is a learned weight mechanism that represents how much one item in
a list is related to others. In NLP, this method has been extremely successful as it allows
a model to learn the relative salience of items with regard to every other item in the input.
In its initial formulation, the implementation had an encoder and a decoder, consisting of 6
stacked transformer layers. All encoders are identical (but do not share weights) and have
two sub-layers: self-attention and a feed-forward network. All decoders are identical (and
do not share weights) and consist of 3 sub-layers: self-attention, encoder-decoder attention,
and a feed-forward layer.

Vaswani et al., 2017 use multi-head attention to produce a linear projection used to attend to
different parts of the input. Since this method does not rely on recurrence or convolution, a
positional encoding is introduced to allow the Transformer to understand where in a sentence
a word is. For more details about the mechanics of the Transformer, we recommend reading
The Tllustrated Transformexﬂ In the original implementation, stacked layers of transformers
train translation systems for English to French and English to German translation, which
results in new SOTA models with 411 the training time.

The Transformer’s ability to model long-term dependencies well and efficiently has made it
a natural fit for most NLP tasks. As we will cover in succeeding sections, researchers have

used this method to produce robust and usable language representations.
2.2 Learning Methods

In this section, we first briefly review some learning methodologies for neural networks in
Section to formalize what learning methods seek to achieve. Then, in Section we
provide a more in-depth description of curriculum learning and cover some ways it has been

using in NLP.

thttps://jalammar.github.io/illustrated-transformer/

10

2.2.1 Brief Overview of learning methodologies

Neural Networks are usually trained by randomly selecting batches of data in a training
corpus. This method has proven to be incredibly robust as it allows the model to learn
the data distribution gradually. While useful in eventually learning data distribution, ran-
dom sampling is unable to build any natural hierarchy or structure quickly. Methods like
curriculum learning [4], reinforcement learning [80], and active learning [14] are alternative
methods which try to improve model training and accuracy by sampling training examples
in a non-random way. Most methods seek to optimize what kind of information a model has
access to at each step in training to find better gradients than a random sample. In domains
like Generative Adversarial Networks (GAN) [25], training models that generate large images
has proven difficult. GAN is a machine learning framework where two NNs, a generator and
a discriminator, compete in a zero-sum game. The discriminator, seeks to classify samples
as real or synthetic (created by the generator) while the generator, seeks to creates artificial
samples which are close to sample from the training dataset. What is unique about GANs
is the generator’s goal is not to produce an sample that is similar to some real sample but
produce a sample which fools the discriminator. This methodology has proven incredibly
effective in producing realistic photos and other complex synthetic data in an unsupervised
way. Finding structure in the size of images, researchers have found tremendous improve-
ments by slowly increasing the target output size as training progresses [39]. Initially, the
Generator produces 2x2 pixel images. Once it and the Discriminator converge, the target
output size is increased to 4x4. This method of scaling continues until 4096x4096 pixel im-
ages are synthesized. By training in an increasingly entropic way, the final model can learn
a better representation with a higher sample efficiency. This work on progressive learning in
GANS inspired this dissertation as LMs, much like GANs, are conceptually simple but can

prove difficult to train at scale.

11

2.2.2 Curriculum Learning

While the common usage of CL in computer science begins in 2009 [4], the concept of CL is
much older. At its core, CL’s vision is the idea of choosing examples to be presented in a spe-
cific order to guide the agent to learn quicker than if they had seen samples in random order.
Early experiments with RNNs [21] focused on learning grammar suggested that learning of
complex grammatical structure improves when the initial examples the models learn with are
more straightforward. CL guides the optimization process to converge faster and guide the
learner to better local minima and can be thought of as a method of re-weighting the data
distribution over model training. Unlike CL, regular random batch sampling emphasizes an
equal contribution of each data point without any notion of how common the data point is
and if the data point can be used to build a foundational understanding.

In their 2009 paper [4], Bengio et al., 2009 suggest that CL approaches training may act
similarly to unsupervised pretraining. The authors explore the effect of CL in three experi-
ments: using a perceptron to learn an equation, shape recognition, and language modeling.
In their language modeling task, they modify the training corpus to make it increasingly dif-
ficult. This language model is trained using samples with a windows size of 5 tokens sampled
from the 631m token Wikipedia corpus. Initially, they remove samples which contain any
word that is not in the N most common words (starts with 5,000). After each pass on the
corpus, N is increased by 5,000 which means the training corpus gradually gets larger, more
difficult, and more representative of the full corpus distribution. After 1 billion updates, the
CL method has a loss of 2.78 vs. the non-CL loss of 2.83. The two main issues discussed
by the authors in CL are: the computational cost to assemble the batch and the significant
amount of data the model can learn from in early epochs is low.

Since this original paper, CL methods have proven effective for many NLP domains, espe-
cially in NMT. Wang et al., 2019 [87] expand on the idea of CL as a method of data selection
and data augmentation. Their implementation focuses on selecting data relevant to all tasks

and disregarding data that may be only applicable to a specific domain and can bring a

12

2.5 BLEU point improvement vs. non-curriculum implementation. Platanios et al., 2019
[62] introduce the notion of competence-based CL, which is the basis for much of our ex-
perimentation. The author’s main contribution is building a CL method called competence
curriculum, which only controls how long the curriculum lasts before regular training occurs.
The authors’ approach is 2-stepped: assign a difficulty value to each sample in the training
data, and train the model with increasingly more data as its competence improves. In the
first stage, a heuristic is applied to rank the training data from easiest to hardest. Using a
cumulative density function (CDF), each sample is then given a value from 0 to 1, which
equates to how difficult the example is. Then, starting with some initial competence A\,
the model will train by sampling a training batch from the training data where the sam-
ple difficulty is lower than the model’s current competence. After each batch is sampled,
the model’s competence is increased by a preset Aijcremen: Until it is training on the full
dataset. A more detailed description as it applies to this dissertation can be found in Chap-
ter Bl In their experiments on NMT, the authors explore the effect of competence-based CL
using Transformers and BiLSTMs using two difficulty methods (sentence length and word
rarity) and two competence step functions (root and linear) and find that all of their CL
implementations outperform their non-CL counterparts. Using the competence curriculum
method, the Platanios et al., 2019 can reduce training time by up to 70% and improve BLEU

performance by 2.2 points on the WMT dataset compared to non curriculum methods.
2.3 Language Modeling

In Section [2.3.1} we briefly review various language modeling methodologies and why lan-
guage modeling is so useful for NLP. Then, in Section introduce ELMo followed by
BERT in Section ??. Then, in Section [2.3.4] we discuss other relevant LMs and how the
broader NLP community is using them. Finally, in Section [2.3.5] we discuss some of the

effects of training and using large LMs to ground our research’s motivation.

13

2.3.1 What is Language Modeling

Language modeling is a way to assign a probability distribution over some textual represen-
tation. In other words, if the task is to model n-grams, the probability of a current input

is the probability of a token w; given the previous ¢ tokens. This is commonly factorized as

[Equation 2.1 What is Language Modeling}

m m

P(wy,...,wy) = [[Pwi |wi, ... wisa) = [[P(wi | wimguory, .- wis) (2.1

i=1 =1

Language models can be useful methods to represent natural language because they allow
models to differentiate meanings of sentences based on context. In other words a model is
able to understand that the word ‘fly’ can mean different things in the sentences: “You look
fly’, ‘Lets fly away!”, ‘That is a fly’.

While language modeling is by no means a new concept, it was not until the introduction
of Neural Network based LM that these representations were able to serve as general un-
derstanding frameworks. Before these Neural Network Language Models (NNLM), most
language modeling usually focused on modeling some form of an N-gram where the proba-
bility of a word only depends on the previous N-words. Large Neural-Network-based LMs
are the first step in an NLP application as a way of turning some form of textual input into
a representation in a vector space.

Language models are created using many training objectives, but general models tend to
be either auto-encoding (AE), auto-regressive (AR) or some combination of the two. AR
models like ELMo [60] or GPT-2 [64] learn a LR by predicting the next token in a sequence.
AE models like BERT [19] and ELECTRA [13] learn a LR by reconstructing some portion

of a sequence.

2.3.2 ELMo

ELMo is an AR LM that was introduced by Peters et al., 2018 [60] and, in many ways,

became the first contextual word representation that saw widespread usage. The name

14

ELMo represents Embeddings from Language Models and refers to how language modeling
can be used to train contextual word embeddings. ELMo is an auto-regressive model built
off the success of GloVe [59], and Word2Vec [55] by seeking to be the first stage of textual
processing for a variety of NLP tasks. ELMo consists of a character-level convolutional
neural network (CNN) followed by two layers of bidirectional LSTMs. The CNN is used
to convert words from a text string into raw word vectors, which are then passed to the
BiLSTMs to model the whole input. Using a character level CNN, ELMo can capture the
inner morphological structure of words, e.g., words like beauty and beautiful are similar when
character level convolutions are used.

Each layer receives a forward pass and backward pass over the textual input, which allows
the model to read the sentence left-to-right and right-to-left and form representations that
understand the whole context of a sentence. The forward pass of the text (reading left to
right) allows the model to build context for a word given previous words, while the backward
pass (reading right to left) allows the model to build context from the end of the input to the
word being modeled. The backward and forward pass are concatenated together. The output
of the first biLSTM is passed into the second layer, and then the final ELMo representation
is the weighted sum of the raw word vectors and the two intermediate word vectors (outputs
of each biLSTM).

ELMo was trained using the Billion Word Corpus [11] and using the unprocessed input as the
target for ELMo’s language modeling task. The model is trained for ten epochs (complete
passes on the corpus), which takes approximately three weeks using three 1080ti GPUs. On
average, the authors find that adding ELMo as a text representation layer provides 20%

improvement across a diverse set of NLP tasks.

2.3.3 BERT

Building on the success of ELMo, leveraging the transformer architecture [84], and taking
the learnings from other contextual word embeddings [32] [65] Devlin et al., 2018 introduced
BERT, which stands for Bidirectional Encoder Representations from Transformers. BERT

15

is an AE LM that uses modified stacked Transformer encoders (12 layers for a small model
and 24 for large) to build a contextual language representation. Instead of using character-
level convolutions or fixed word vectors as a starting point, BERT leverages a piecewise
tokenization [91], which sets a vocabulary size of 30,000.

Just like other language models before it, BERT trains using unsupervised pre-training on a
large text corpus. Unlike previous models, BERT introduces two new training objectives as
a way to steer the model: Masked Language Modeling (MLM) and next sentence prediction
(NSP).

MLM reformulates language understanding as a cloze task [82], where the model’s goal is to
predict what a hidden word in a sentence may be. To train using MLM BERT introduces a
new token [M AS K] to represent the hidden word. 15% of each the corpus tokens are selected
to be replaced of which 80% (12% of the corpus) are replaced with [MASK], 10%(1.5% of
the corpus) are replaced with a random token, and the remaining 10% are left alone. When
the model finds a [M ASK] token, it predicts what the word should be. NSP is a training
method inspired by QA systems, which tend to have two sets of sentences to reason on: a
query and a context passage. In NSP, the model is fed text, which combines two sentences,
A and B, with the unique separation token [SEP]. In 50% of the NSP samples, sentence B
directly follows A while in the remaining 50% A, and B are selected at random. The model
has a binary training goal if the sentences are next to each other in the original text.
When the BERT architecture and training regime is trained on the Toronto Book Corpus [98]
(800m words) + English Wikipedia (2.5 billion words), the authors can create a generalizable
contextual word embedding, which since the models release has fine-tuned on countless

transfer tasks to produce new SOTA models.

2.3.4 Beyond BERT

Besides BERT and ELMo, there has been considerable research into additional language
models. RoBERTa [50] improves on BERT by training on a larger corpus for a longer time.
XLNET [92] combines AE and AR while avoiding some of the pitfalls of each method by

16

modifying AR to maximize the expected log-likelihood of a sequence concerning all permu-
tations of factorization order. XLNET also removes the notion of a [M ASK] token to avoid
training the model with a token that never occurs in text and implements the whole archi-
tecture using the Transformer-XL [17]. ALBERT [43] explores the role of size in LM, finding
that parameter weights can be shared across layers meaning they can have 18 times fewer
parameters and train 1.7x faster than regular BERT all while producing similar language
representation to BERT. DistilBERT [70] produces a smaller LM using knowledge distillation
resulting in a similar performance to BERT with a 40% smaller model. GPT [65], GPT-2
[64], and GPT-3 [§] build an AR LM more suited toward language generation by using pro-
gressively larger models and a modified transformer decoder architecture. ELECTRA [13]
produces a model with comparable performance to BERT with substantially shorter training
by having the model predict all tokens in a sentence instead of the [M ASK] token and by
corrupting the input using a Generator similar to that of a GAN. Beyond these few models

we mention, countless other optimizations and applications of these large scale NNLM.

2.3.5 Language Model’s Impact

In studying the performance of the rapidly growing NNLM, researchers have found that
larger models are more sample efficient and reach a higher level of performance with fewer
steps [38]. Kaplan et al., 2020 find that the dataset size, model size, and compute used
for training all have a power-law relationship with performance as long as the factors grow
proportionally. The authors estimate that the best model would have about a trillion pa-
rameters, trained on a trillion word corpus using over 100 petaflops.

While there is no debate on the positive impact these large LMs have had on NLP, the
broader research community has begun discussing the broader effects of these continually
growing language models. A decade ago, most NLP research could be developed and trained
on commodity laptops or servers. Competitive research usually requires multiple instances
of specialized hardware like GPUs and TPUs [77]. Strubell et al., 2019 broadly studies the

energy implications of training these NNLM and estimates that a single training run of a

17

model like GPT-2 can cost upward of $40,000, the architecture search and hyperparameter
tuning can be upwards of $3,000,000, and the C0, released by training one of these models
can be similar to the C0, released in the entire life-cycle of a car. Zhou et al., 2020 [96]
introduce HULK to encourage researchers to think about efficiency in every stage of model
creation. Looking at the impact of large language models, researchers can infer that some
of the most interesting research in NLP will be focused on how to scale model size while

balancing the increased cost in doing so.

2.4 Evaluation

To understand what the many LMs are doing, the research community has explored many
ways to measure language understanding. By no means are language understanding data sets
the first use case of natural language benchmarks, but the explosion of NNLM has provided
ample testing grounds to explore what various benchmarks are evaluating and its effect. Our
scope is narrow and focuses on the evaluation of NNLM regarding language understanding
in English.

The General Language Understanding Evaluation Benchmark (GLUE) [86] is a set of re-
sources focused on the evaluation of natural language understanding systems. This bench-
mark pools eleven sentence-level language understanding tasks that seek to cover a diverse
range of data type, genre, and difficulty as a proxy for true language understanding. The
dataset has been built around a leaderboard format to make benchmarking across language
understanding systems more straightforward. Its success has since spawned other bench-
marking efforts such as SUPERGLUE [85], XTREME [33], and XGLUE [4§].

The GLUE dataset tasks include question answering, sentiment analysis, and textual entail-
ment, of which the specifics will now be described. It is worth noting that tasks tend to use
differing metrics to account for differences in data distributions. The Corpus of Linguistic
Acceptability (COLA) [88] consists of 10657 sentences from 23 linguistics publications where

each example has been annotated acceptability (grammaticality). It uses Matthews Correla-

18

tion Coefficient (MCC) as its evaluation metric. The Stanford Sentiment Treebank (SST-2)
[76] is pairs of movie review sentences and human annotations of their sentiment where the
goal of the task is to predict the sentiment of a given sentence. Its evaluation metric is
accuracy. The Microsoft Research Paraphrase Corpus (MRPC) [20] is a collection of sen-
tence pairs extracted from online news with a human annotation for whether the sentences
in the pair are semantically equivalent. MRPC is measured using F1 and Accuracy which
are usually separated by a slash or comma. The Quora Question Pairs (QQP) [I5] consists
of question pairs from the question-answering website Quora that have been annotated for
semantic equivalence. QQP is measured using F1 and Accuracy which are usually separated
by a slash or comma. The Semantic Textual Similarity (STS) Benchmark [9] is a collection
of sentences drawn from news data with a human annotation of similarity score (1-5). STS is
measured using Pearson Correlation and Spearman Correlation which are usually separated
by a slash or comma. The Multi-Genre Natural Language Inference Corpus (MNLI) [90]
is a collection of sentence pairs with textual entailment annotations. MNLI is performance
is measured using accuracy. The Stanford Question Answering Dataset (SQUAD) [66] is a
dataset consisting of question-paragraph pairs, where one of the sentences in the paragraph
contains the answer to the corresponding question. In GLUE, this task has been simplified
into a binary classification task where the goal is to determine the sentence contains the
answer to the question. This modified question answering task is called Question Natural
Language Inference (QNLI) and is evaluated in terms of accuracy. The Recognizing Textual
Entailment (RTE) dataset is a collection of some of the textual entailment challenges [16]
[3] [24][5] which has been simplified into a binary classification problem. RTE performance
is evaluated using accuracy. The Winograd Schema Challenge (WNLI) [46] is a dataset
where there are context sentences where ambiguous pronouns have been replaced with each
possible referent, and there is a binary classification task if this is the correct referent or
not. WNLI performance is evaluated using accuracy. Finally, the Diagnostic Dataset (DX)
is a handpicked set of examples from the MNLI corpus used to evaluate individual linguistic

phenomena and it uses MCC as its evaluation metric. Using the average of performance on

19

each task a GLUE score is created which provides an overall sorting metric to compare LM
performance.

To ensure that NLP model evaluation (of which GLUE is an example) is done in a consistent
and reproducible method, the JTANT toolkit was developed [63]. JTANT is an open-source
tool for conducting multi-task and transfer learning experiments in English to implement
the GLUE benchmark. JIANT builds on the notion of a configuration which provides all
settings needed to run and reproduce an experiment in a simple text file. JIANT provides
consistent data processing, classifier implementation, and evaluation to ensure that users of

the framework can focus on the outputs and not worry about implementing benchmarking

tasks like GLUE.

20

Chapter 3
RESEARCH APPROACH

To understand the effects that CL can have on LM, we will explore various curriculum
methods on training, evaluation, and usage in downstream tasks. Our methodology is driven

around three main research questions:

1. Does curriculum learning help a language model converge to a more optimal global

minimum?

2. Does the language representation learned via curriculum learning improve performance

on downstream tasks when compared to non-curriculum methods?

3. Do curriculum learning methods increase model convergence speed in both pre-training

and downstream task fine-tuning?

In Section [3.1], we will first describe our experiment’s structure as scoped to various im-
plementations of CL. Next, in Section we will describe and discuss our methods for
curriculum development. Then in Section we will discuss how we will train and evaluate

our LMs and how we will explore hyperparameter tuning.
3.1 Experiment Structure

Our experimentation strategy is simple: train many models with a fixed structure and hyper-
parameters using different curriculum. Our implementation of this strategy is achieved by
exploring two different curricula: corpus replacement style and competence based curricu-

lum. Once a robust set of models are trained with each curriculum method, all models are

21

evaluated on a held out portion of the training corpus and fine-tuned on the GLUE Bench-
mark. In the corpus replacement style (CRS) we create multiple distinct training data sets
which are are used to train an unmodified LM. In the competence based curriculum (CBC)
we first assign a notion of difficulty to each sample in a dataset and then alter the batch
sampling method within the language model to sample from a gradually difficult training
data. Our CRS method provides few controls but is computationally cheap while the CBC

provides ample control at the cost of computational overhead.

3.1.1 Language Model

To optimize how quickly we can train our systems, we will only explore the curriculum’s effect
on an established successful baseline, ELMo [75]. We leverage the codeﬂ used for the original
ELMo experiments and use the same hyper-parameters reported in their paper. We make
two changes to the original implementation: an ability to use a CBC and the introduction of
padding token < PAD >. In the original implementation, the training loader will load a text
file, shuffle all the lines, and then iterate through them. In our implementation of CBC, we
load the full corpus, which we do not shuffle, then select a batch at random from the examples
that meet our model’s current competence. Our implementation changes data sampling to
unconstrained random sampling without replacement to sampling with replacement. Since
our implementation of competence curriculum is based on sentence-level difficulty, it becomes
possible that batches include sentences that are smaller than the defined context length that
meets the original ELMo implementation (20 tokens). As a result, we have to introduce a
padding token, < PAD >, which ensures that each sentence is at least the context window’s
size. To avoid having the model learn to predict the < PAD > token, we introduce a
masking function that sets the loss to 0 for any padding token.

It is worth noting that the introduction this token increases the computational cost to train

Thttps://github.com/allenai/bilm-tf

22

a model as all padding tokens are essentially lost computation. To calculate the effect of this
we counted the amount of padding tokens that are introduced in the wikitext-103 corpus by
While we did not compute the cost of using this method for each of our curriculum methods
we estimated the inefficiency introduce by this method by calculating the amount of padding
tokens introduced. In the wikitext-103 corpus the training corpus has 101,425,658 tokens.
When this is parsed into sentences and we sum the modulo of the context window(20) over all
sentences we find we must introduce 42,547,653. If we do not split the corpus into sentences
we still must introduce 12,204,311 tokens. This means that before even accounting for the
cost of the curriculum implementation our model training requires about 12.03 or 41.95

percent more FLOPs.

3.1.2 Datasets

For our training corpus, we leverage two well-established language modeling benchmarks of
wikitext-2, and wikitext-103 [54]. These datasets collect verified good and featured articles
from English Wikipedia and feature 2 million and 103 million tokens respectively. FEach
dataset is comprises if full articles with original punctuation, numbers, and case and the
only processing is the replacement of all words which occur less than 3 times with a jUNK},
token to represent unknown words . Each corpus has already been tokenized, processed, and
split into train, validation, and evaluation components and availible for broad usage. While
most other research on language modeling has been focusing on bigger and bigger data, our
focus on smaller data allows us to experiment with more curricula. We understand this will
limit our model performance relative to current top methods as a smaller corpus limits the
model performance [38]. Moreover, these datasets were chosen because they are standard
benchmarks for language modeling and sufficient size to train large scale, language models.
We believe that the diversity of our two datasets (wikitext-103 is 50x larger than wikitext-2)
will allow us to draw broad conclusions about CL independent of data size. More information
about corpus size and diversity can be found in Equation [3.1} Information about the corpus

size used for other LM is included for comprehensiveness [11].

23

Corpus Name vocabulary Size | Tokens lines sentences
wikitext=2 33278 2507007 44836 131262
wikitext-103 267735 103690236 | 1809468 | 5343947
1B Word Benchmark | 793471 829250940 | N/A N/A

Table 3.1: Training Corpus details

As our competence methodology focuses on sentences, we make two versions of the wikitext
datasets: sentence-level and line level. For our sentence level corpus, we leverage SPACY.10’s
[31] E]sentence boundary detector to spit the original corpus to one delimited by sentences.
The two different corpus splitting mechanisms mean that each of our competence based

curriculum is run on four different datasets.

3.1.3 FEuvaluation

To evaluate our models, we will focus on three aspects of LM performance: performance
on the trained task, performance on a downstream task, and the speed at which a model
improves its performance on the trained task. The broad goal of our LMs is to represent
a given corpus accurately and to do so we will evaluate model perplexity on the held-out
portions of our datasets. To measure the quality of our LMs downstream we will use the

industry standard GLUE tasks.
3.2 Curriculum Construction Methods

3.2.1 Baseline

Before we study the effect of CL on language modeling we first retrain the public ELMo

model on our datasets and evaluate on GLUE. We also download the publicly released

Zhttps:/ /spacy.io/

24

ELMo models and evaluate on GLUE. Our training of ELMo is done on for 10 epochs on
the wikitext-2 and wikitext-103.

3.2.2 Corpus Replacement Style

Corpus Replacement Style is inspired by the the Bengio et al., 2009 [4] implementation of CL
for LM. In their implementation, they train an AR LM with examples from a corpus with
a context window of size 5. In the epoch the model trains on all 5 token spans which only
contain the 5,000 most common tokens. For the second epoch, training mirrors the prior
epoch but with a threshold of 10,000 most common words. This process continues until the
model is training on a full unaltered corpus.

In early experiments we explored an approach modeled after the Bengio et al., 2009 method
but as context size of ELMo is much larger performance suffered. Seeking to preserve the
separation of model training and training data creation we created what we refer to as
Corpus Replace Style (CRS) curriculum. In this implementation we simplify the corpus not
by removing training spans but by replacing words less common than the threshold with an
iUNK; token. Threshold selection was done by exploring various increment sizes and initial
threshold size and our final most successful methods produced 6 unique datasets for input
dataset. To match the training time of our baseline we train one epoch on each corpus and

an additional 4 on the unaltered corpus. Details on corpus thresholds can be found in Table

3.2

Corpus Name | 1 2 3 4 5 6 7-10
enwiki-2 5,000 | 10,000 | 15,000 | 20,000 | 25,000 | 30,000 | 33,278
enwiki-103 25,000 | 50,000 | 75,000 | 100,000 | 150,000 | 250,000 | 267,735

Table 3.2: Vocabulary size per epoch

25

3.2.3 Competence Method

Following the work of [62] introduced in Section we will apply the notion of a CBC to
LM training. CBC methods rely on the ability to assign a difficulty score to each sample in
the training corpus and use this to only allow the model to train on samples that are easier
than its current competence level. A model’s competence score is defined by how far along
in a training regime the model is.

Our training corpus, X is a collection of sentences S, where each sentence s; is a sequence
of words s; = w! wi,...,w! and each sentence is assigned a difficulty €,,. At each step in
training model competence is represented by \; where)y represents the initial competence
and Ajperement epresents how much model competence increases after each training batch.
Prior to training, each sentence in the training data has been assigned a difficulty score from
0 to 1 represented by €,,. For each training batch, the model is only able to train on samples
that have a difficulty where €,, <= ;.

To keep keep curriculum length for CBC and CRS equal we set our curriculum length to
6 epochs do a grid search on Aj,crement and Ag values. After our grid search we select the
parameters that provide lowest training perplexity and set value Ay = 0.1 A\g = 0.1 for
wikitext-2 and A\g = 0.01 Ajperement = 0.00001 for wikitext-103. The CBC based sampling
algorithm is formalized in Algorithm [I]

26

Algorithm 1: Competence-based curriculum
Result: Model Trained with Competence Based Curriculum

Input: X, Ao, Aincrement ;

Compute difficulty, €, for s; € X;

Compute Cumulative density of e,;

At = Ao;

for training step t = 1,...,n do
Sample batch b from X such that €,, < A\s;
Train on batch b;
Aty1 = At + Aincrement;

end

To understand the effect of CBC we study 8 different curricula per dataset: 2 baseline
and six different difficulty heuristics. The first baseline is a curriculum method where we
set A\g = 1, which means that our model can sample from the entire training dataset. This
baseline aims to establish the effect that changing training with sample-without-replacement
to sampling-with-replacement has on LM performance. The second baseline is a random
curriculum where we sort the file randomly to create our sentence difficulty scores. The goal
of this baseline is to establish the effect of any arbitrary curriculum on LM training. The
following six heuristics we explore are based on common NLP difficulty metrics, the original
CBC paper, and some linguistically motivated difficulties. The heuristics are sentence length,
unigram sentence probability, bigram sentence probability, trigram sentence probability, part
of speech diversity, and sentence dependency complexity. For each methodology, for each s;
in X, we compute a difficulty value for each sentence ¢, and then sort the dataset by this
difficulty score. Using the sorted dataset we compute the cumulative density function (CDF)

giving each sentence of the difficulty score €, € [0, 1]. We will now describe each method.

27

Sentence Length

Formalized in Equation [3.1], this curriculum is built on the idea that is a lot harder to model
longer sentences, as longer sentences require better tracking of dependencies. We believe this
method would be particularly effective in Transformer based models as it can steer the model

into learning how to leverage its multi-headed attention with different sentence lengths.

sentence-length-e;, = length(s;). (3.1)

Sentence Entropy

Another part of language that can be difficult to model is words with a variety of frequency in
the corpora. Models, if assumed to behave like humans, would find it difficult to understand
the meaning of a word if they do not see it in a corpus nor have a diversity of usages to
infer meaning. Since the statistical strength of training samples with rare words is low
and the early model learned word embeddings are likely to have high variance it is likely
that exposing a model early to rare words can result in badly estimated representations.
To quantify this difficulty we propose producing a sentence entropy for each sentence with
respect to its unigram, bigram, and trigram probabilities. These products can be thought of
as an approximate naive language modeling as it assumes words are sampled independently.
Note, we are not calculating the conditional probability of each word given the preceding
N words but the probability of the N-gram given the text corpus. To produce a difficulty
score €5, we first calculate an n-gram probability for each unigram, bigram, and trigram in
the training corpus. Then using this probability we calculate the n-gram difficulty of a input
s; by computing the log product of each n-gram € s; as show in Equation [3.2] wuc, be, and
tc are the counts of unique unigrams, bigrams, and trigrams in the corpus, C' is the corpus,

x € Cis a line in the corpus and w; € z is a word in a line, and [(z) represents the length

28

of x in n-grams.

I(x
erc Zn(:)(] W; == Wn

p(wn) = us
> pce onm (Wi == wplew; g == wp)
p(wm wm) — cC 0 - +
s
l(z)—2 __ __ __
N w; == wpkwi == W &Wwi0 == w;
p(wmwmawj) = erc Zn—(] (t = = j>
s
length(s;)
3.2
migramee(s) =]| log(p(un) (32)
n=0
length(s;)—1
bigram-€(s;) = H log(p(wp—1,wy))
n=0
length(s;)—2
trigram-¢,;, = H log(p(wy, W11, Wni2))
n=0

Sentence Dependency Complexity

There are various methods to define sentence complexity but in our experiments we scope
complexity to the complexity of a dependency parse. We leverage the language processing
framework spacy H and for each sentence we generate a dependency parse and starting at

the root we measure the depth of the tree. Sentence difficult is formalized in Equation (3.3

dep-€5, = depth(s;) (3.3)

Part Of Speech Diversity

Another core part of language complexity can be derived by the diversity of parts-of-speech
in a sentence. We believe that more difficult sentences feature a higher diversity of parts-of-
speech (POS). We leverage the part of speech parser from spacy to produce a set of all pos
in each sentence. POS Diversity is formalized in Equation [3.4]

pos-€5, = len(set(pos(s;))) (3.4)

3spacy.io

29

Sentence Vs. Line CBC

As we mentioned prior, our curriculum methods are designed for sentence level sampling but
most modern LMs train using a context window of line of text or larger. As a result we
apply the CBC methods to both the sentence split corpus and a line delimited corpus. For
the line delimited corpus we use the existing line breaks in the wikitext-* corpuses and apply
our same heuristics at the line level instead of the sentence level. This means we favor short
paragraphs far more in our line corpus than our sentence corpus. In our sentence corpus easy
sentences will show up earlier in training while in our line corpus if there is a easy sentence
which is part of a long line of text, it will not show up until later in training.

It is worth noting that since the percentage of padding tokens vary between these two
methods line based curriculum effectively are larger batches. Since our batch size is limited
by our GPU size we instead extend the training time of the sentence based method by roughly
30%. While there are no guarantees on actual update steps, this approximately allows both
methods to train on the same amount of tokens as the original ELMo implementation which

is 10 * tokens in corpus
3.3 Model Training and Evaluation

For model pre-training we follow the original implementation of ELMO and use 2 stacked
4096 dimensional BiLSTMs trained bidirectionally. We use dropout of 0.1, use a batch size
of 128, use a context window of 20 tokens, and train for 10 epochs on the full text corpus.
In our pre-training we a total of N models. We train 2 baselines (one for each corpus size)
using the original ELMo implementation and then train 2 BS models using the same setup.
For each of these 4 models they are evaluated on the validation portion of their train corpus
at the end of each epoch. For competence based curriculum we train 32 models using our
modified implementation: 4 corpuses and 8 curricula per corpus. Since training examples
each model sees are different we track model performance over time by evaluating on the

validation portion of the train corpus every 100 batches. Training was done using 3 Nvidia

30

2080 TI GPUs and training on the wikitext-103 corpus takes about a 30 hours and training
on wikitext-2 is under an hour.

For model fine-tuning everything was implemented using the JIANT framework. Model
weights were dumped from the pretrained models and downloaded from the public original
ELMo model. Using these weights, each model is fine tuned on each of the GLUE sub-
tasks. Using JIANT we normalized our training to have a batch size of 8, random seed
of 42 initial learning rate of 0.0001, dropout of 0.2, and a Multi-layer perceptron with 512
hidden dimensions. Training of each model continues until the model learning rate dips
below 0.000001 or the model has trained for 1000 epochs. Then, for each sub task, the best
result the model predicted is the GLUE score for that task. Each model fine tuning takes
about 8 hours using the same training setup.

To compare model performance across curricula we will look at 3 different results: model
perplexity on held out portion of training corpus, how this perplexity changes over time, and

model transfer performance on GLUE.

31

Chapter 4
RESULTS

In the following tables and figures we have introduced various forms of shorthand. We
refer to the WikiText-103 corpus as wikil03, wiki2 as wiki2 and the Billion Word Corpus as
BWC, -1 denotes a model which leverages a line based corpus while -s denotes a model which
leverages the sentence based corpus, DEP denotes dependency parse depth, POS denotes
part of speech diversity. For the GLUE benchmark evaluation metrics are unique to each

task have are described in Section 2.4

4.1 Corpus Replacement Style Curricula

As covered in previous sections, we implemented the CRS curriculum across the two sizes
of wikitext datasets. We evaluate model performance on the validation portion at the end
of each epoch, and once the model has trained for ten epochs, we evaluate using JIANT’s
[63] implemented GLUE baseline. Unless another metric is explicitly mentioned, the GLUE
sub-task metric is accuracy.

As seen in Figure and Figure [4.2] we see that the baseline method implementations
outperform the CRS across the entire training regime in terms of validation perplexity.
Initially, while the model is training on the limited corpus, it performs worse on the validation
set. As the model reaches the original training data, the model is close to the baseline
perplexity but can never pass it. By the 7th epoch, both methods have virtually identical
perplexities. Another interesting trend is that when the full corpus is introduced (epoch 6),
the validation perplexity briefly increases which leads us to believe that ELMo is learning a
general representation of the corpus each epoch. The final observation is that the baseline

method reaches low perplexity on a large corpus much faster than the CRS method. The

32

baseline method can achieve a perplexity under 100 by the end of the first epoch, while the

CRS method cannot do so until the end of the 5th.
The effect of the curricula looking at GLUE can be found in Table [4.1] First, we find

/00 -

=23

= Method

a m— wikitext-2 CRS

o

E 100 wikitext-2 baseline
200 -

2.5 5 7.5 10
Epochs

Figure 4.1: Validation perplexity of baselines and replacement methods trained on wikitext-2

measured every epoch.

that the pubic ELMo implementation performs worse on the GLUE dataset than all of our
implementations. It is unclear why this is, and we will not focus on this further. Next, we
see that when the training corpus is small, the BS implementation outperforms the baseline
method by a sizable margin. As the corpus size grows, the baseline performance passes
all other methods. There is high variability in individual task scores such that STS-B and
the Diagnostic tests are much better with the BS system, while COLA, WNLI, and RTE

are much better in the baseline method. One possible cause of this is BS models learn

33

200 -
=, 150 - .
ﬁ Curriculum
a = wikitext-103 CRS
o
E wikitext-103 baseline
100 -
50-

2.5 5 7.5 10
Epochs

Figure 4.2: Validation perplexity of baselines and replacement methods trained on wikitext-

103 measured every epoch.

better representations for binary classifications but not better representations for multi-label
classification. If we exclude WNLI, the BS methods outperform the baseline methods by a
wide margin. We can also observe various tasks that the small corpus models cannot learn as
both wiki2 models achieve 0 on COLA. We believe this may result from the model learning
a flipped representation early on and not being able to recover from it. There does not seem
to be a clear association in curriculum methods performing worse or better based on the task
training data size. On some tasks with small training corpus like RTE the non curriculum

methods perform better while in others like STS-B the top model is a CRS method.

34

Method Overall Score | Cola | SST MRPC STS-B QQP MNLI | QNLI | RTE | WNLI | DX
Baseline wikil03 | 0.671 0.281 | 0.862 | 0.866/0.801 | 0.765/0.773 | 0.716/0.763 | 0.644 | 0.761 | 0.610 | 0.535 | 0.139
CRS wikil03 0.657 0.254 | 0.852 | 0.875/0.816 | 0.794/0.793 | 0.738/0.785 | 0.662 | 0.719 | 0.588 | 0.437 | 0.162

).607).06 0.742 | 0.854/0.789 | 0.683/0.684 | 0.697/0.745 | 0.566 | 0.726 | 0.581 | 0.563 | 0.119
0.7 0.846/0.775 | 0.661/0.663 | 0.701/0.753 | 0.585 | 0.717 | 0.542 | 0.563 | 0.13
).

0.852 | 0.823/0.711 0.547 0.733/0.765 | 0.671 | 0.719 | 0.48 0.563 | 0.155

Baseline wiki2 ((
CRS wiki2 0.59 (
Baseline BWC ((

).595

Table 4.1: GLUE results for competence replacement methods and baselines trained on

wikitext-2.

4.2 Competence-Based Curricula

4.2.1 Wikitext-2

Looking at performance on the small corpus in Figure 4.3 and Figure 4.4 we see that all
the curricula methods start to overfit on the training corpus after about 16 of the 24 epochs
(which equates to when the curriculum training is finished). The full data underpinning
the figures mentioned above can be found in the Appendix. Despite seeing over-fitting,
we see that POS and DEP generally learn some of the lowest perplexity on the validation
set. Looking at the difference between sentence-level and line-level training, we see a closer
grouping in model performance distribution between sentence vs. line, which we attribute
to a common sentence-level structure independent to corpus separation. Finally, we see that
the best performance is achieved by the non-curricula baseline (initial competence set to
1) with a perplexity of 770, followed by Random with a perplexity of 2105. Despite the
success of these curriculums, all are orders of magnitude above the baseline score of 151.
We believe this is caused by the change in dataset distribution caused by our curriculum
learning implementation. Even our baseline curricula which has access to the full training
corpus does not achieve a high perplexity as the distribution it sees in training differs from
the true distribution.

As we move our focus to GLUE results as shown in Table [4.2] we see a very different picture

as the curriculum methods generally outperform the baselines by a wide margin. We see

35

that models do not seem to learn any representation that can be used by WNLI, as those
results are all virtually identical. Surprisingly it does not seem that a more optimal method
for splitting the corpus is apparent as sentence-based training achieves a similar result in
line-based training. We believe this means we cannot make a strong generalization that can
be made about the effects of what method is used for training. The final point to observe is
that nearly every curricula method outperforms the baseline implementation. Perhaps most
surprising, random curricula performing second best when measure by overall glue score
despite their being no motivation to the structure the model sees.

Overall, when training on wiki2, we find that competency-based curricula methods provide
somewhat of a mixed message. While performance on the validation portion is much worse,
GLUE performance is much better. Since we believe what is most important in a model is
how well the language representations can transfer to downstream tasks, we argue that with

small training datasets CBC outperform traditional training regimes.

36

200000 -

Curriculum
=== Baseline
150000 -

Bigram
wes DEP
=== Length
100000 -
= Random

Perplexity

= Trigram

50000 - — Unigram

i i i i i i
500 1000 1500 2000 2500
Batches

Figure 4.3: Validation perplexity of each curriculum trained on line based wikitext-2 mea-

sured every 100 batches.

37

25000-
20000 4 Curncuuun
=== Baseline
Bigram
= DEP
= 15000 -
w Length
o
E POS
10000 - === Random
= Trigram
| Jnigram
5000 -

i i i i
4] 1000 2000 3000 4000
Batches

Figure 4.4: Validation perplexity of each curriculum trained on sentence based wikitext-2

measured every 100 batches.

4.2.2 wikitext-103

As we scale to the larger corpus, we find that not all the trends seen on the small data hold.
Looking at the results in Figure 4.5, Figure 4.6 and Figure 4.7, we can see that similar to
the smaller corpus, none of the curriculum learned models can learn a representation that
transfers from their perturbed training to the validation set. Unlike the non-curriculum tech-
niques, which achieve a perplexity of 36, none of the curricula methods ever learn a model
with a perplexity under one thousand. We note that similar to what was seen on the wiki2 is
on wikil03. N-gram methods have a similar distribution in performance. Also, holding over

from wiki2, DEP, LEN, and POS demonstrates a slow and steady improvement in perplexity

38

Method Overall | Cola | SST MRPC STS-B QQP MNLI | QNLI | RTE | WNLI | DX
bigram-s 0.645 | 0.188 | 0.790 | 0.844/0.775 | 0.732/0.733 | 0.742/0.788 | 0.617 | 0.766 | 0.570 | 0.563 | 0.131
random-s 0.644 0.210 | 0.780 | 0.847/0.779 | 0.715/0.712 0.744/0.791 | 0.616 | 0.760 | 0.570 | 0.563 | 0.143
unigram-s 0.640 0.209 | 0.755 | 0.861/0.799 | 0.731/0.731 0.733/0.778 | 0.613 | 0.757 | 0.545 | 0.563 | 0.135
pos-s 0.637 0.207 | 0.765 | 0.849/0.777 | 0.714/0.714 | 0.727/0.781 0.606 | 0.745 | 0.567 | 0.563 | 0.134
dep-s 0.636 0.175 | 0.792 | 0.863/0.797 | 0.721/0.720 0.727/0.786 | 0.613 | 0.749 | 0.567 | 0.521 | 0.137
dep-1 0.632 0.190 | 0.727 | 0.85/0.782 0.708/0.704 | 0.735/0.782 | 0.598 | 0.748 | 0.581 | 0.563 | 0.118
unigram-1 0.628 0.175 | 0.768 | 0.856/0.782 | 0.675/0.674 | 0.738/0.792 | 0.598 | 0.746 | 0.560 | 0.549 | 0.132
trigram-1 0.627 0.152 | 0.761 | 0.838/0.762 | 0.695/0.691 0.730/0.782 | 0.616 | 0.764 | 0.542 | 0.563 | 0.144
trigram-s 0.626 0.172 | 0.788 | 0.833/0.779 | 0.730/0.731 0.744/0.796 | 0.620 | 0.761 | 0.552 | 0.437 | 0.137
length-1 0.625 0.185 | 0.748 | 0.844/0.770 | 0.658/0.654 | 0.725/0.783 | 0.601 | 0.748 | 0.567 | 0.563 | 0.128
no curricula-s | 0.621 0.148 | 0.747 | 0.836/0.770 | 0.706/0.705 0.734/0.780 | 0.612 | 0.719 | 0.538 | 0.563 | 0.121
bigram-1 0.616 0.175 | 0.768 | 0.856/0.782 | 0.675/0.674 | 0.738/0.792 | 0.598 | 0.746 | 0.560 | 0.437 | 0.132
random-1 0.614 0.000 | 0.763 | 0.847/0.775 | 0.699/0.699 0.721/0.784 | 0.611 | 0.749 | 0.578 | 0.563 | 0.143
CRS 0.607 0.060 | 0.742 | 0.854/0.789 | 0.683/0.684 | 0.697/0.745 | 0.566 | 0.726 | 0.581 | 0.563 | 0.119
pos-1 0.607 0.000 | 0.737 | 0.842/0.770 | 0.663/0.660 0.712/0.771 0.610 | 0.750 | 0.592 | 0.563 | 0.155
no curricula-s | 0.591 0.069 | 0.768 | 0.847/0.765 | 0.728/0.731 0.722/0.758 | 0.500 | 0.718 | 0.538 | 0.451 | 0.107
base 0.590 0.000 | 0.700 | 0.846/0.775 | 0.661/0.663 0.701/0.753 | 0.585 | 0.717 | 0.542 | 0.563 | 0.130
length-s 0.528 -0.006 | 0.750 | 0.805/0.674 | 0.708/0.710 0.537/0.682 | 0.326 | 0.510 | 0.592 | 0.521 | 0.008

Table 4.2: GLUE results for competence based curricula methods on trained on wikitext-2.

as their training continues. As the dataset has grown larger, we see increased volatility in

perplexity changes across all training methods.

Looking at the result of the transfer tasks in Table [£.3] we find that the trends we see in

the smaller corpus no longer hold. The best model in terms of transfer learning is the non-

curriculum baseline implementation from the original ELMo implementation. This baseline

method outperforms on the overall score and outperforms every other model on tasks like

CoLA, where the score is nearly 20% better. Surprisingly, after the baseline method, the

trigram curricula appear to generate the best transfer task as both sentence and line-based

methods as they are ranked second and third when measured on the average across tasks.

We also note that some of the best performing curricula are also those models that had some

of the highest perplexities on the training task.

90000000 -

60000000 -

Perplexity

30000000 -

39

Curriculum
= Baseline

Bigram
DEFP
=== Langth
POs
== Bandom
== Trigram

| nigram

Y,.) 4R

i
0 2500

Figure 4.5: Validation perplexity of each curriculum

measured every 100 batches.

i i i i
5000 7500 10000 12500

Batches

trained on line based wikitext-103

40

200000 -
150000 - Curriculum
.-? s DEP
E === Length
o
E 100000 - — POIS
= Random
50000 -
[]_
i i i i i i
4] 2500 5000 7500 10000 12500
Batches

Figure 4.6: Validation perplexity of each curriculum trained on line based wikitext-103

measured every 100 batches. Unigram, bigram, and baseline model performance removed

improved interpretation

41

10000 -
7500 - Curriculum
=== Baseline
= DEP
E === Length
-
$ 5000- i Fos
=== Random
= Trigram
i | fi
2500 - ' : fu ';‘{~Li ' |u‘ \ |
'4' .

i i i
4] 5000 10000 15000
Batches

Figure 4.7: Validation perplexity of each curriculum trained on sentence based wikitext-103

measured every 100 batches.

4.3 Discussion

Reflecting on our experiments and questions posed earlier in the dissertation in Section [3] we

believe our results support the following findings:

1. CL can help converge to a more optimal global minima when the training corpus is

small. As corpus size scales, the positive impact of CL disappears.

2. The downstream representation learned via CL outperforms non-curricula methods

when the corpus size is small, but as the corpus size grows, CL methods no longer

generate the best representation.

42

Method Overall | Cola | SST MRPC STS-B QQP MNLI | QNLI | RTE | WNLI | DX

baseline 0.671 | 0.281 | 0.862 | 0.866/0.801 0.765/0.773 0.716/0.763 | 0.644 | 0.761 | 0.610 | 0.535 | 0.139
trigram-s 0.666 0.208 | 0.857 | 0.865/0.806 | 0.790/0.790 0.733/0.779 | 0.658 | 0.757 | 0.567 | 0.563 | 0.136
trigram-1 0.665 0.207 | 0.854 | 0.871/0.804 | 0.781/0.782 0.752/0.799 | 0.655 | 0.767 | 0.556 | 0.549 | 0.144
unigram-s 0.664 0.190 | 0.856 | 0.861/0.797 | 0.784/0.784 0.747/0.791 | 0.654 | 0.773 | 0.556 | 0.563 | 0.140
no curriculum-s | 0.663 0.190 | 0.845 | 0.878/0.824 | 0.767/0.768 0.748/0.788 | 0.651 | 0.746 | 0.588 | 0.563 | 0.140
no curriculum-1 | 0.663 0.214 | 0.826 | 0.865/0.804 | 0.766/0.766 0.747/0.789 | 0.643 | 0.772 | 0.581 | 0.563 | 0.145
random-s 0.661 0.203 | 0.843 | 0.870/0.806 | 0.778/0.779 0.740/0.789 | 0.644 | 0.745 | 0.574 | 0.563 | 0.151
length-s 0.659 0.229 | 0.827 | 0.867/0.804 | 0.765/0.766 0.747/0.783 | 0.642 | 0.762 | 0.538 | 0.563 | 0.135
CRS 0.657 0.254 | 0.852 | 0.875/0.816 | 0.794/0.793 | 0.738/0.785 | 0.662 | 0.719 | 0.588 | 0.437 | 0.162
bigram-1 0.656 0.180 | 0.826 | 0.854/0.792 | 0.770/0.770 0.753/0.794 | 0.645 | 0.766 | 0.560 | 0.563 | 0.137
length-1 0.656 0.212 | 0.820 | 0.851/0.782 | 0.768/0.767 | 0.734/0.788 | 0.634 | 0.752 | 0.578 | 0.563 | 0.135
unigram-1 0.654 0.194 | 0.823 | 0.857/0.789 | 0.755/0.754 0.752/0.794 | 0.625 | 0.753 | 0.574 | 0.563 | 0.125
random-1 0.652 0.179 | 0.836 | 0.861/0.789 | 0.772/0.774 0.753/0.797 | 0.640 | 0.772 | 0.578 | 0.493 | 0.139
pos-1 0.649 0.163 | 0.827 | 0.861/0.794 | 0.756/0.757 | 0.754/0.791 | 0.630 | 0.732 | 0.570 | 0.563 | 0.138
bigram-s 0.649 0.195 | 0.859 | 0.867/0.799 | 0.784/0.785 0.736/0.772 | 0.651 | 0.754 | 0.599 | 0.408 | 0.132
dep-1 0.644 0.231 | 0.846 | 0.856/0.779 | 0.776/0.776 0.746/0.786 | 0.637 | 0.761 | 0.542 | 0.423 | 0.137
pos-s 0.640 0.114 | 0.794 | 0.853/0.772 | 0.775/0.774 0.740/0.782 | 0.624 | 0.738 | 0.578 | 0.563 | 0.108
dep-1 0.587 -0.040 | 0.842 | 0.805/0.679 | 0.786,/0.789 0.682/0.730 | 0.321 | 0.757 | 0.614 | 0.549 | 0.038

Table 4.3: GLUE results for Competence based curricula methods on trained on wikitext-103.

43

3. CL methods do not help the model convergence speed in any noticeable way and in
our use of padding tokens CL methods actually make training fare less efficient than

non CL methods.

These finding, matched with no generalized superior curricula performance and the increased
cost in running curriculum methods lead us to believe that language models learn more from

the stochastic sampling of a corpus than any structure experimenters try to introduce.

4.8.1 Failure of Competence Based Curriculum

What surprised us most in our results was the failure in learning the training data we see
in our CBC method. Based on the changes in validation perplexity we believe the model is
over-fitting on the altered training data. We believe the cause of this is our hyperparameter
selection for A\g and Ajperement- We realize that since each method is effusively sampling
from a different training distribution comparison of training perplexities are not comparable.
Additionally, if we look at the difference in validation perplexity curves of various methods
it is apparent that they are not learning at the same rate. Some methods like DEP, and
POS do not see major fluctuations indicating the chosen curriculum parameters work well
while many of the n-gram methods consistently fluctuate in a similar fashion indicating the
chosen hyperparameters are sub optimal for them. Given the non trivial computational cost
to explore A\g and Ajncrement for each method and the disconnect seen between pre-training
perplexity and performance on GLUE we have decided to to pursue further optimization in

this dissertation.

4.8.2 Curriculum Learning Alters the Data Distribution

We find it useful to formulate CL as moving from sampling without replacement to sampling
with replacement with an ever-growing population. As a result, our implementations of CBC
do not guarantee that the model will see the entire dataset ten times, and as a result, the

distribution of the data seen in training is likely different from the distribution of the vali-

44

dation dataset. We believe this is why the CL implementations can never generalize their
performance in the train portion of the corpus to the validation portion. To avoid this one
such approach would be to over sample easy portions of the training data in early training
and extend the length of this epoch. This way the model could build of easy example but
still see every part of the training corpus at least ten times.

Despite this inability to learn the training distribution, CBC methods are still able to trans-
fer well to understanding tasks, which makes us think that what is important in pre-training
is not the actual task but what the model can learn from the task. This finding is interesting
because it challenges the notion that a model must fit the target dataset well to learn a
representation that transfers well to downstream tasks. We find that even the models with
high validation perplexities can still learn good representations for our transfer task.
Another observation our data leads us to is tweaking the training distribution’s can allow the
models to do better in transfer tasks because it is unable to overfit to the small pre-training
corpus. Since our implementation generates some form of continually changing data distribu-
tion from where random batches are sampled, the train distribution is continually changing.
Since the training regime is constantly changing, we hypothesis CBC is effectively simulating
a larger, more complex dataset. On one hand, this larger artificial training set causes the
model never learns a good representation of the original training corpus which we see in
model perplexity. On the other hand, since the model never learns a good representation of
the training corpus it can effectively simulate a much larger training corpus which produces a
LR which when measured in terms of transfer performance is much better. This is especially
apparent in the effectiveness of random curricula, where the random training structure still
leads to improved transfer performance. Instead of having one consistent dataset of size IV
we have a dataset of size =), N * \; datasets.

Independently of what heuristic is used in early training, some portion (usually the easy
portion) is over-sampled while in other portions (usually hard portion), examples are under-
sampled. Recently, work in understanding how NN work has lead to the discovery there are

sub-networks within the larger NN, which are more optimal for the task [22]. The process

45

of training a DNN can be thought of as an architecture search within the larger randomly
initiated network by decreasing the weights of sub-optimal sub-networks and increasing the
weights of optimal sub-networks. Since the CL method is oversampling some portion of
the dataset during early training, CL methods will favor sub-networks that are likely not
optimal for the full data distribution. We believe this may be the cause of why CL methods
under-perform non-CL methods on the training task. One way to address this shortcoming
would be to modify curricula methods to create ever-changing distributions that are close to
the original distribution. In other words, in early training, instead of oversampling from the
lower strata of the CDF CL methods could sample from slightly distorted distributions of
the same CDF. One such implementation may divide the data into deciles and sample from
each decile for each epoch. In other words instead of sampling from the whole distribution
the first training epoch would sample from the lowest 10% of the CDF while the last training
epoch would sample from the highest 10%.

4.3.8 Training Efficiency

With regard to improving the efficiency of LM training, our implementations had the opposite
effect. Our implementation of CBC introduces an overhead which makes training over 40%
less efficient. In seeing the effective impact of successful training datasets like the Toronto
Book corpus we believe that successful CL methods need to focus on rebalancing training
distribution in a model independent method. By rebalancing data distributions CL methods
can ensure that the cost of compute only happens once instead of the n times the data is
resampled in model training and the m potential models that use this data. Moreover, by
moving curriculum generation outside of model training CL. methods can have a larger impact

because researchers only need to train on a new dataset instead of changing their model code.

46

4.3.4 Sentence vs Line Training

We find No marked difference in the effects of training with sentence-based vs line based
corpora when evaluated on GLUE. We do find a large difference in perplexity on the pre-
training task but we believe this is caused by the inefficiency introduced by our padding
token. Since sentence based sampling has 30% more padding tokens the model is able to
learn substantially less from every sample when compared to the line corpus. Surprisingly this
decreased ability to learn the training data seems to have no impact on transfer performance.
This is in line with the purpose of pretraining as the goal is not actually to learn the training

data but use it to form a generalized representation.

47

Chapter 5
CONCLUSION

Throughout this dissertation, we have explored how some approaches in curriculum learn-
ing apply to language modeling. Our research explored two types of curricula and used them
to pretrain ELMo, a language model. Our first curriculum, corpus replacement style, in-
troduces no compute overhead in training and makes the training corpus more difficult by
limiting the training vocabulary in regularly spaced increments. This curriculum does not
improve model perplexity on the training corpus, but when the corpus is small outperforms
the non-curriculum methods on transfer tasks. Our second curriculum, competence based
curriculum, explores the effect of various curricula when applied to the same language model
pretraining. In these experiments, we find that while the model cannot learn a good rep-
resentation of the training corpus, their representations transfer well to downstream NLP
tasks. We find that on small datasets, competence curriculum show improvement versus
non-curriculum methods across the board. As we scale the corpus size, we find that non-
curriculum methods perform best. We do not see any superiority in the curriculums we
explore, nor do we find a clear difference in training effects with sentences over lines. While
our implementations could not produce improvements, we believe the results set the stage

for further research and pose some broader questions for learning methods for NN.

48

Chapter 6
FUTURE WORK

We seek to continue our exploration of CLL methods and methods to make training and
using models more efficient. Since we began our work there has been much exciting work
on finding sub-networks in NNs that preserve the accuracy of the original model [22]. Other
methods have explored the pruning of large models for smaller equally accurate models [2§]
[94] [18] which we would like to expand on, focusing on how these pruning methods perform
with transfer learning. While these method are not directly computationally more efficient
to train they make reuse of some original large model (which can be trained once) and
allow for more efficient model deployment. Additionally, inspired by the layered nature of
Transformer-based models, we would explore jointly how progressive methods may look like
for LMs. One such approach would be to increase the number of transformer encoders while
increasing data difficulty, similar to what has been done with GANs [39]. Another method
may model longer context windows progressively starting with short sentences and scaling to
entire documents. Finally, we seek to make a benchmarking system that can allow researchers
to explore the effect of various curricula on many downstream tasks. This benchmark would
include tasks from NLP, CV, and beyond and the focus for researchers would be on the
training regime. The goal would be to provide a framework similar to GLUE and JIANT,
which provide a set of architectures and tasks which would allow researchers to focus only on
sampling methods. If the broader community had an easy to use a benchmark, they could

focus on studying the just curriculum methods.

[1]

[10]

49

BIBLIOGRAPHY

Ben Athiwaratkun and Andrew Gordon Wilson. Multimodal word distributions. ArXiv,
abs/1704.08424, 2017.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

Roy Bar-Haim, I. Dagan, B. Dolan, Lisa Ferro, Danilo Giampiccolo, and B. Magnini.
The second pascal recognising textual entailment challenge. 2006.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In ICML 09, 2009.

L. Bentivogli, Peter Clark, I. Dagan, and Danilo Giampiccolo. The sixth pascal recog-
nizing textual entailment challenge. In TAC, 20009.

Adam L. Berger, Stephen Della Pietra, and Vincent J. Della Pietra. A maximum entropy
approach to natural language processing. Computational Linguistics, 22:39-71, 1996.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. Transactions of the Association for Computational
Linguastics, 5:135-146, 2017.

T. Brown, B. Mann, Nick Ryder, Melanie Subbiah, J. Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, G. Kriiger, Tom Henighan, R. Child, Aditya Ramesh, D. Ziegler, Jeffrey
Wu, Clemens Winter, Christopher Hesse, Mark Chen, E. Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, J. Clark, Christopher Berner, Sam McCandlish, A. Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. ArXiv,
abs/2005.14165, 2020.

Daniel Matthew Cer, Mona T. Diab, Eneko Agirre, I. Lopez-Gazpio, and Lucia Specia.
Semeval-2017 task 1: Semantic textual similarity multilingual and crosslingual focused
evaluation. ArXiv, abs/1708.00055, 2017.

Saikat Chatterjee, Alireza M. Javid, Mostafa Sadeghi, Partha P. Mitra, and Mikael
Skoglund. Progressive learning for systematic design of large neural networks. ArXiv,

abs/1710.08177, 2017.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[22]

[23]

20

Ciprian Chelba, Tomas Mikolov, Michael Schuster, Qi Ge, Thorsten Brants, Phillipp
Koehn, and Tony Robinson. One billion word benchmark for measuring progress in
statistical language modeling. ArXiv, abs/1312.3005, 2014.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What
does bert look at? an analysis of bert’s attention. ArXiv, abs/1906.04341, 2019.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. Elec-
tra: Pre-training text encoders as discriminators rather than generators. ArXiv,
abs/2003.10555, 2020.

David A. Cohn, Zoubin Ghahramani, and Michael 1. Jordan. Active learning with
statistical models. J. Artif. Intell. Res., 4:129-145, 1994.

Kornél Csernai, Jan 2017.

I. Dagan, Oren Glickman, and B. Magnini. The pascal recognising textual entailment
challenge. In MLCW, 2005.

Zihang Dai, Z. Yang, Yiming Yang, J. Carbonell, Quoc V. Le, and R. Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. ArXiv,
abs/1901.02860, 2019.

Adrian de Wynter and D. Perry. Optimal subarchitecture extraction for bert. ArXiv,
abs/2010.10499, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In NAACL-HLT,
2019.

W. Dolan and Chris Brockett. Automatically constructing a corpus of sentential para-
phrases. In IWP@IJCNLP, 2005.

J. Elman. Learning and development in neural networks: the importance of starting
small. Cognition, 48:71-99, 1993.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. arXiv: Learning, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In International Conference on Learning Representations,
2019.

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

ol

Danilo Giampiccolo, B. Magnini, I. Dagan, and W. Dolan. The third pascal recognizing
textual entailment challenge. In ACL-PASCAL@ACL, 2007.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial networks.
ArXiv, abs/1406.2661, 2014.

Junliang Guo, Xu Tan, Linli Xu, Tao Qin, Enhong Chen, and Tie-Yan Liu. Fine-
tuning by curriculum learning for non-autoregressive neural machine translation. ArXiv,

abs/1911.08717, 2019.

Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Y. Li, Dongliang Xie, Hong
Luo, S. Yao, Y. Wang, H. Yang, and W. J. Dally. Ese: Efficient speech recognition
engine with sparse Istm on fpga. In FPGA 17, 2017.

Song Han, Huizi Mao, and W. Dally. Deep compression: Compressing deep neural net-
work with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149,
2016.

S. Hochreiter. The vanishing gradient problem during learning recurrent neural nets and
problem solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst., 6:107-116, 1998.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computa-
tion, 9:1735-1780, 1997.

Matthew Honnibal and Ines Montani. spaCy 2: Natural language understanding with
Bloom embeddings, convolutional neural networks and incremental parsing. 2017.

J. Howard and Sebastian Ruder. Universal language model fine-tuning for text classifi-
cation. In ACL, 2018.

J. Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and M. John-
son. Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual
generalization. ArXiv, abs/2003.11080, 2020.

Wenpeng Hu, Jiajun Zhang, and Nan Zheng. Different contexts lead to different word
embeddings. In COLING, 2016.

S. Jean, Kyunghyun Cho, R. Memisevic, and Yoshua Bengio. On using very large target
vocabulary for neural machine translation. ArXiv, abs/1412.2007, 2015.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[45]

[46]

[47]

o2

Mandar Joshi, Danqgi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer
Levy. Spanbert: Improving pre-training by representing and predicting spans. ArXiv,
abs/1907.10529, 2019.

Takatomo Kano, Sakriani Sakti, and Satoshi Nakamura. Structured-based curriculum
learning for end-to-end english-japanese speech translation. In INTERSPEECH, 2017.

Jean Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. ArXiv, abs/2001.08361, 2020.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of
gans for improved quality, stability, and variation. ArXiv, abs/1710.10196, 2017.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Skip-thought vectors. In NIPS, 2015.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M. Rush.
Opennmt: Open-source toolkit for neural machine translation. In Proc. ACL, 2017.

Tom Kocmi and Ondrej Bojar. Curriculum learning and minibatch bucketing in neural
machine translation. In RANLP, 2017.

Zhen-Zhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
and Radu Soricut. Albert: A lite bert for self-supervised learning of language represen-
tations. ArXiv, abs/1909.11942, 2019.

Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and docu-
ments. ArXiv, abs/1405.4053, 2014.

Claudia Leacock, Geoffrey G. Towell, and Ellen M. Voorhees. Towards building contex-
tual representations of word senses using statistical models. 1993.

H. Levesque, E. Davis, and L. Morgenstern. The winograd schema challenge. In KR,
2011.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and comprehension.

ArXiv, abs/1910.13461, 2019.

[48]

[49]

[50]

[51]

[52]

[55]

[56]

[57]

[58]

[59]

93

Yaobo Liang, N. Duan, Yeyun Gong, N. Wu, Fenfei Guo, Weizhen Qi, Ming Gong,
Linjun Shou, Daxin Jiang, G. Cao, Xiaodong Fan, Bruce Zhang, Rahul Agrawal, Edward
Cui, Sining Wei, Taroon Bharti, Ying Qiao, Jiun-Hung Chen, Winnie Wu, S. Liu, Fan
Yang, Rangan Majumder, and M. Zhou. Xglue: A new benchmark dataset for cross-
lingual pre-training, understanding and generation. ArXiv, abs/2004.01401, 2020.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and Noah A.
Smith. Linguistic knowledge and transferability of contextual representations. In
NAACL-HLT, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly opti-
mized bert pretraining approach. ArXiv, abs/1907.11692, 2019.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to
attention-based neural machine translation. In FMNLP, 2015.

Andrew McCallum, Dayne Freitag, and Fernando C Pereira. Maximum entropy markov
models for information extraction and segmentation. In ICML, 2000.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in
translation: Contextualized word vectors. In NIPS, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models. ArXiv, abs/1609.07843, 2016.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. CoRR, abs/1301.3781, 2013.

George A. Miller. Wordnet: a lexical database for english. Commun. ACM, 38:39-41,
1992.

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. Multi-stage document
ranking with bert. ArXiv, abs/1910.14424, 2019.

N. Othman, R. Faiz, and Kamel Smaili. A word embedding based method for question
retrieval in community question answering. 2017.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors
for word representation. In EMNLP, 2014.

[60]

[61]

[62]

[69]

[70]

[71]

[72]

54

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. ArXiv,
abs/1802.05365, 2018.

Matthew E. Peters, Mark Neumann, IV RobertLLogan, Roy Schwartz, Vidur Joshi,
Sameer Singh, and Noah A. Smith. Knowledge enhanced contextual word representa-
tions. In EMNLP/IJCNLP, 2019.

Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabés Péczos, and

Tom Michael Mitchell. Competence-based curriculum learning for neural machine trans-
lation. ArXiv, abs/1903.09848, 2019.

Yada Pruksachatkun, Phil Yeres, Haokun Liu, Jason Phang, Phu Mon Htut, Alex Wang,
[an Tenney, and Samuel R. Bowman. jiant: A software toolkit for research on general-
purpose text understanding models. ArXiv, abs/2003.02249, 2020.

A. Radford, Jeffrey Wu, R. Child, David Luan, Dario Amodei, and Ilya Sutskever.

Language models are unsupervised multitask learners. 2019.
Alec Radford. Improving language understanding by generative pre-training. 2018.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,
0004 questions for machine comprehension of text. In EMNLP, 2016.

Corby Rosset. Turing-nlg: A 17-billion-parameter language model by microsoft, 2020.

Dwaipayan Roy, Debasis Ganguly, S. Bhatia, Srikanta J. Bedathur, and M. Mitra. Us-
ing word embeddings for information retrieval: How collection and term normalization
choices affect performance. Proceedings of the 27th ACM International Conference on

Information and Knowledge Management, 2018.

A. Sagheer and Mostafa Kotb. Time series forecasting of petroleum production using
deep Istm recurrent networks. Neurocomputing, 323:203-213, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a dis-
tilled version of bert: smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108, 2019.

Burr Settles. Active learning literature survey. 2009.

Claude E. Shannon. Prediction and entropy of printed english. 1951.

73]

[74]

[75]

[76]

[30]

[81]

[82]

[83]

[84]

95

Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise
overview. ArXiv, abs/2004.08900, 2020.

Mohammad Shoeybi, Mostofa Ali Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models
using model parallelism. ArXiv, abs/1909.08053, 2019.

Noah A. Smith. Contextual word representations: A contextual introduction. ArXiv,
abs/1902.06006, 2019.

R. Socher, Alex Perelygin, J. Wu, Jason Chuang, Christopher D. Manning, A. Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In EMNLP, 2013.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy consider-
ations for deep learning in nlp. In ACL, 2019.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian,
Danxiang Zhu, Hao Tian, and Hua Wu. Ernie: Enhanced representation through knowl-
edge integration. ArXiv, abs/1904.09223, 2019.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, and Haifeng
Wang. Ernie 2.0: A continual pre-training framework for language understanding.
ArXiv, abs/1907.12412, 2019.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction.
IEEFE Transactions on Neural Networks, 16:285-286, 1998.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and Jonathan Berant. olmpics - on what
language model pre-training captures. ArXiv, abs/1912.13283, 2019.

W. L. Taylor. “cloze procedure”: A new tool for measuring readability. Journalism
Mass Communication Quarterly, 30:415 — 433, 1953.

Dat Thanh Tran, Moncef Gabbouj, and Alexandros losifidis. Subset sampling for pro-
gressive neural network learning. 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, L. Kaiser, and Illia Polosukhin. Attention is all you need. ArXiv,
abs/1706.03762, 2017.

[85]

[36]

(93]

[94]

o6

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael,
Felix Hill, Omer Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for
general-purpose language understanding systems. ArXiv, abs/1905.00537, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R.
Bowman. Glue: A multi-task benchmark and analysis platform for natural language
understanding. In BlackboxNLPQEMNLP, 2018.

Wei Wang, Ye Tian, J. Ngiam, Yinfei Yang, [saac Caswell, and Zarana Parekh. Learning
a multitask curriculum for neural machine translation. ArXiv, abs/1908.10940, 2019.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptabil-
ity judgments. Transactions of the Association for Computational Linguistics, 7:625—
641, 2019.

Joseph Weizenbaum. Eliza — a computer program for the study of natural language
communication between man and machine. Commun. ACM, 26:23-28, 1966.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge
corpus for sentence understanding through inference. ArXiv, abs/1704.05426, 2018.

Y. Wu, Mike Schuster, Z. Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
M. Krikun, Yuan Cao, Q. Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, M. John-
son, X. Liu, L. Kaiser, S. Gouws, Y. Kato, Taku Kudo, H. Kazawa, K. Stevens,
G. Kurian, Nishant Patil, W. Wang, C. Young, J. Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, G. S. Corrado, Macduff Hughes, and J. Dean. Google’s neural machine
translation system: Bridging the gap between human and machine translation. ArXiv,
abs/1609.08144, 2016.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and
Quoc V. Le. Xlnet: Generalized autoregressive pretraining for language understanding.
In NeurIPS, 2019.

Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojana-
palli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch
optimization for deep learning: Training bert in 76 minutes. 2019.

Jiecao Yu, Andrew Lukefahr, D. Palframan, Ganesh S. Dasika, R. Das, and S. Mahlke.
Scalpel: Customizing dnn pruning to the underlying hardware parallelism. 2017
ACM/IEEE }4th Annual International Symposium on Computer Architecture (ISCA),
pages 548-560, 2017.

[95]

[96]

[97]

(98]

[99]

57

Xuan Zhang, Pamela Shapiro, Manish Kumar, P. McNamee, Marine Carpuat, and Kevin
Duh. Curriculum learning for domain adaptation in neural machine translation. ArXiv,
abs/1905.05816, 2019.

Xiyou Zhou, Zhiyu Chen, Xiaoyong Jin, and W. Wang. Hulk: An energy ef-
ficiency benchmark platform for responsible natural language processing. ArXiv,
abs/2002.05829, 2020.

Yunxiao Zhou, Zhihua Zhang, and Man Lan. Ecnu at semeval-2016 task 4: An empirical
investigation of traditional nlp features and word embedding features for sentence-level
and topic-level sentiment analysis in twitter. In SemFEval@NAACL-HLT, 2016.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual expla-
nations by watching movies and reading books. In The IEEE International Conference
on Computer Vision (ICCV), December 2015.

Will Y. Zou, R. Socher, Daniel Matthew Cer, and Christopher D. Manning. Bilingual
word embeddings for phrase-based machine translation. In EMNLP, 2013.

A.1 Corpus Replacement Style

Appendix A

EXPERIMENTAL RESULTS

Epochs | baseline wiki-2 | bs wiki-2 | bs wiki-103 | baseline wiki-103
1 620.45544 758.29285 | 227.65094 | 83.05149
2 451.85522 507.58508 | 138.29044 | 56.865345
3 358.74582 445.0215 | 113.23114 | 48.632687
4 303.83347 424.0015 | 100.1231 44.216614
5 241.15233 364.40637 | 92.03778 41.57386
6 221.38237 395.8324 | 90.143585 | 39.798542
7 195.55809 213.29416 | 39.72011 38.54776
8 168.30266 181.99895 | 38.672005 | 37.64779
9 162.16602 163.70233 | 37.66034 37.009693
10 151.25607 153.26689 | 37.029747 | 36.412056

o8

Table A.1: Validation perplexity of baselines and replacement methods measured every

epoch.

A.2 Competence Based Curriculum

Batches Baseline Random Dependency Part of Speech Unigram Bigram Trigram Length

0 19498.28 21163.44 26654.95 26528.35 22053.12 19535.65 20830.92 29933.74
100 5600.459 5461.039 5730.613 5215.405 5412.148 5164.017 5130.01 6159.207
200 8412.964 5335.186 4173.729 4526.756 4801.211 4104.102 4100.64 5091.564
300 10206.76 5121.969 4350.757 4552.211 5111.258 4242.258 5154.742 4209.991
400 9694.969 4656.295 4411.583 4181.944 4576.212 4606.979 4085.841 4266.357
500 4263.702 4187.064 3975.314 4448.919 4315.669 3466.285 3425.474 6061.277
600 4637.823 4007.23 3804.034 5325.821 3865.498 3853.12 3574.217 5577.375
700 3670.097 4142.923 3831.932 3942.862 9677.842 3230.582 3502.653 4219.224
800 3221.346 3970.763 3749.825 4645.618 4742.95 2954.3 3138.186 4247.958
900 3959.106 5503.046 4688.382 5068.281 3871.681 3856.12 12232.67 4298.991
1000 3132.26 8124.751 4383.869 4416.356 4699.026 3397.773 8652.374 3856.153
1100 13849.47 7308.988 4047.798 4257.96 6621.724 5047.275 5068.213 5205.368
1200 6503.515 5181.124 4269.158 7781.854 17770.95 3666.078 10005.95 4551.86

1300 7178.955 19722.45 5696.292 3884.615 14288.98 8585.893 10586.63 4248.825
1400 5806.94 7711.413 3276.619 4795.949 11649.69 14055.36 9180.324 4275.567
1500 7896.527 9227.372 6222.824 4230.453 7551.371 12330.95 57175.42 5575.008
1600 21873.66 36947.88 4324.498 7872.976 14629.82 12650.03 23212.86 5090.137
1700 12979.71 20851.81 5498.242 5195.954 5852.289 28631.84 56772.43 5290.866
1800 34403.65 24371.06 4613.688 6938.421 17223.34 10833.46 56383.88 5559.394
1900 45148.42 12774.94 4005.43 7535.285 21746.75 32077.18 50338.7 3713.533
2000 28062.45 62992.67 4582.964 6047.258 26790.6 29896.4 25035.54 6571.44

2100 28706.4 105545.6 3806.545 8146.35 42521.56 68461.61 36110.3 5294.52

2200 42284.38 62399.3 5332.897 4722.252 19101.4 78817.77 111061.6 8789.567
2300 211236.3 89274.6 4591.32 6133.123 60930.05 57298.29 53007.47 7117.323
2400 23207.46 115620.8 4978.687 5435.751 44079.81 49065.99 81409.19 6686.693

Table A.2: Validation perplexity of each

sured every 100 batches.

29

curriculum trained on line based wikitext-2 mea-

Batches Baseline Random Dependency Part of Speech Unigram Bigram Trigram Length

0 19577 18972.3 21636.473 25085.371 17233.63 16562.04 16953.24 25580.67
100 4393.4 3869.01 4907.4766 5089.3213 4227.456 3895.485 5203.784 5679.227
200 3775.8 3342.43 3766.6887 3795.3662 3193.679 3014.929 3285.696 5670.292
300 3193.5 2855.56 3518.257 3350.3381 3022.722 2862.637 10340.28 7913.436
400 3018 2868.06 3079.2112 3235.9043 2984.732 2797.256 2898.078 4154.833
500 2629.8 2624.77 3339.034 3249.0745 2615.482 2638.166 2932.65 2693.087
600 2751.3 2482.34 2926.965 2851.3337 2597.397 2542.316 2572.945 2762.114
700 2538.6 2377.76 2814.3276 3095.3398 2438.547 2426.895 2399.556 2432.863
800 3605.3 2241.75 2780.0137 3009.666 3130.137 2377.921 2476.211 2709.775
900 2679 2297.78 2464.8281 2462.9426 4788.499 2485.33 2421.764 2963.076
1000 3212.4 2219.75 2665.2764 2486.0417 2088.218 2745.638 2329.685 2468.642
1100 3965.8 2257.58 10348.93 2716.1235 2225.749 2263.412 2619.83 2386.155
1200 2557 2224.1 3332.5085 2176.2024 2086.037 2821.298 2512.837 2055.139
1300 2566.7 2505.48 2912.2942 2439.959 2668.968 2386.25 2376.939 2844.38

1400 4251.9 2659.05 3528.9463 2964.2732 2541.053 2565.921 2829.178 2446.484
1500 2974.5 2815.76 2924.3967 2067.4797 3674.223 2774.171 2343.067 2960.37

1600 2915.3 2344.01 2849.28 2534.103 3890.443 3291.204 2685.646 3916.598
1700 2847.2 2127.63 5314.9077 2186.36 3038.41 3183.71 2816.234 2621.306
1800 2747.2 2285.29 2729.2192 2487.4993 2781.731 2755.068 2685.075 2596.71

1900 3222.8 2440.04 2387.6428 2464.5767 3036.206 2939.755 2961.87 3006.224
2000 3432.1 2423.35 2498.7942 2584.4092 2965.91 2836.161 2218.454 2221.723
2100 3438.4 2001.77 2103.243 3023.273 3039.94 2557.588 2440.281 2958.65

2200 2597.5 2516.39 2807.2107 3113.2212 2539.777 2650.921 2384.331 2922.845
2300 2537.7 2572.49 2737.5596 2898.6365 3100.773 2493.721 2449.759 2993.907
2400 3433.7 2633.99 2596.0078 2330.572 2583.728 2229.844 2207.221 2361.876
2500 3063.9 2835.72 1969.3733 2286.7202 2515.244 2056.117 2092.182 3337.922
2600 3235.2 2638.41 4091.7915 2449.3496 3334.162 2431.215 2069.936 3580.122
2700 4040.3 2670.14 3125.7693 2753.1929 3107.351 2691.088 2656.51 4305.21

2800 3402.3 2347.04 5570.7563 2362.6565 2062.797 2586.205 2425.246 3611.754
2900 5388.1 2740.16 4000.6243 3194.3093 2790.644 2407.481 2207.875 4251.675
3000 5389.1 2568.82 11589.234 3652.8022 2783.052 2784.212 2332.16 3563.234
3100 4227.3 3012.2 3253.4585 3206.2273 2920.262 3337.26 2850.718 2102.434
3200 3962.9 3157.9 10045.327 4041.8535 3573.764 2864.314 2191.798 3055.313
3300 5547.2 2583.23 17333.396 3213.1606 2899.022 2394.718 2577.445 2699.329
3400 7155.4 3601.26 3040.4277 3099.2976 3455.618 2837.321 2653.487 3373.731
3500 5882.7 3813.07 16560.428 2756.5728 4385.529 2440.946 3067.075 2999.78

3600 4887.4 2530.43 9361.988 2919.6719 3249.393 2523.844 2807.685 2630.625
3700 6196.1 2383.66 20497.451 2655.2168 4421.092 2611.211 3142.592 2940.323
3800 5810.9 3164.84 17406.648 3329.6848 5049.87 3314.212 3773.563 3204.518
3900 5575.6 2112.18 11576.83 2928.0552 3045.523 2490.426 2244.873 2624.535

60

Table A.3: Validation perplexity of each curriculum trained on sentence based wikitext-2

measured every 100 batches.

Batches Baseline Random Dependency Part of Speech Unigram Bigram Trigram Length

0 172216.9 165166.4 207358.9 215021.8 161038.8 172513.9 154467.2 225595.5
100 17752.13 14454.38 18175.47 22662.42 16281.71 14672.36 17838.29 21663.13
200 9440.708 9769.283 12327.02 13543.41 9924.168 8290.118 10426.92 15506.72
300 8046.883 7058.333 8941.258 12681.64 8252.508 9401.705 8486.866 11837.9

400 7659.163 6817.952 8116.79 9643.348 7333.894 7104.682 8532.874 14069.69
500 17995.63 6471.114 7051.935 8360.009 6820.631 6963.977 7218.733 10314.54
600 6822.212 6106.644 6559.931 7686.075 7022.727 6500.029 6966.083 10291.89
700 17029.94 5843.533 6919.971 6740.012 13876.88 6019.34 7615.919 9683.603
800 6325.329 5509.364 5746.84 6492.756 6293.799 5675.621 6490.206 9585.646
900 6180.572 5735.097 6853.742 6257.095 5582.361 5015.897 6265.562 8510.857
1000 5201.506 5340.536 6016.334 6763.791 5556.981 5671.72 6699.286 8763.411
1100 5922.099 7981.178 6031.5 5781.142 5672.412 5543.336 6820.982 7628.734
1200 7504.642 4498.846 5527.9 6176.282 5555.387 5341.254 5271.304 9265.033
1300 9524.957 5150.772 6403.761 6860.242 6320.734 9381.356 5810.231 8530.71

1400 6117.824 7766.959 5489.638 8058.786 4760.8 7997.636 15470.43 10192.23
1500 12209.29 14478.4 5555.36 6639.258 11870.64 50514.04 5882.589 7210.841
1600 11165.06 5065.396 5965.695 8284.104 20614.66 10279.71 10198.11 10114.68
1700 16563.81 22438.63 6070.104 9168.329 8410.966 7793.44 8148.277 8040.585
1800 11889.61 7600.428 6984.522 6836.841 36763.81 42040.47 24620.74 10472.91
1900 17304.26 12271.82 5551.246 5711.337 9572.392 107992.7 32649.54 10064.73
2000 20918.78 26494.65 7118.212 7859.69 24109.07 28076.71 49109.53 9722.515
2100 20992.18 21873.45 7361.074 7938.744 24785.81 128563 19978.95 11637.65
2200 5439.09 29953.31 4925.848 8127.114 8477.693 254906.1 16281.98 9188.663
2300 15406.22 15651.8 7203.72 5258.265 29320.53 19536.08 31459.52 6698.711
2400 5505.089 51011.46 6021.017 6700.699 41768.13 190713.8 109279 9499.203
2500 27145.59 102160.4 5934.129 7351.912 40052.76 16625.78 28730.56 9936.309
2600 16985.74 118023.9 5448.081 8072.763 18126.65 57096.73 32798.09 10838.18
2700 32159.18 119966 6966.203 6144.639 37110.21 86387.07 79481.34 10947.64
2800 31417.87 86970.59 5826.9 8385.137 34130.03 75165.63 76327.33 11602.87
2900 14614.76 121529.8 6327.055 6687.796 13573.45 62818.87 58189.62 8543.565
3000 37013.51 72880.48 5346.401 6942.903 13903.45 72515.88 59559.2 13702.55
3100 26318.72 191492.9 5910.706 8088.175 20284.44 42139.34 66478.91 9224.82

3200 17521.95 49747.02 5319.806 7718.233 59631.16 208311.3 29734.44 12086.46
3300 30431.01 71643.49 6437.672 7128.939 28100.13 88150.58 112454.6 8411.166
3400 51275.57 30327.61 5738.155 5817.499 41311.68 91364.31 123496.2 13534.45
3500 51215.12 41681.3 8302.683 5853.579 27738.42 126417.5 167231.6 9795.62

3600 280749.3 85320.23 7812.386 7880.961 87955.51 70526.31 46442.92 9895.758
3700 84822.91 48738.14 9736.042 8622.563 22330.83 230793.9 32258.89 15883.25
3800 53030.07 71282.7 7123.815 9047.259 35390.02 351032.8 83754.86 9699.777
3900 112609.9 52523.73 10376.54 8074.103 81709.11 102754.4 47849.13 28220.17
4000 46003.87 65833.73 4979.105 9481.283 74501.85 782343.5 798678.3 18383.94
4100 128197.2 65345.9 4852.084 10374.46 161899.6 224331.9 252933.2 14701.67
4200 76697.49 50991.32 3934.178 10077.66 238026.5 379865.8 234076.5 34005.17
4300 189905.8 59316.09 13718.04 11378.06 63523.12 232656 429235.1 24132.4

4400 209395.3 84390.66 10762.15 7380.278 126112.6 253614.6 934066.5 45418.72
4500 238296.8 68939.56 9456.224 8651.029 121685.7 346800.8 229740.9 15752.04
4600 168189.2 50374.2 13548.85 6933.216 93128.2 169451.7 1039976 20756.09
4700 119946.5 49438.28 14698.38 8238.936 67726.18 1229356 568497.7 15351.88
4800 99391.29 45065.61 9423.725 12850.34 236304.9 717031.4 671055.9 39285.41
4900 826470.1 39831.68 6392.607 9569.764 118792.2 342211.1 182205.8 13760.5

5000 533522.1 48656.72 6969.119 9091.118 36777.41 336925.2 313601.7 16320.92

61

Table A.4: Validation perplexity of each curriculum trained on line based wikitext-103 mea-

sured every 100 batches. Batches 0-5000.

Batches Baseline Random Dependency Part of Speech Unigram Bigram Trigram Length
5100 746036.3 42115.35 14609.33 5563.435 89606.75 1252387 481100.7 14452.05
5200 450154.2 26239.17 9602.885 9182.374 34282.01 908216.8 896863.8 13975.82
5300 463886.8 71350.03 17884.33 11694.03 45075.45 797953.4 292389.5 13086.2
5400 381798.3 23556.72 13086.15 11440.52 31661.02 4210174 987853.3 27401.4
5500 772458.8 40193.19 6611.186 7330.768 48236.98 635867.9 572814.9 28124.18
5500 772458.8 40193.19 6611.186 7330.768 48236.98 635867.9 572814.9 28124.18
5600 435986.2 33766.4 7594.993 8776.357 57675.37 2312263 379041.1 29720.69
5700 380407.4 65307.84 7152.652 9622.659 22217.88 1977097 646754.9 18851.84
5800 987583.8 44488.23 5389.356 13977.19 148238.7 753675.8 477882.3 18554.14
5900 525945.9 43697.09 8578.991 11714.1 96957.49 2054665 2008199 12342.02
6000 595516.3 78893.88 4152.551 17958.13 28597.49 554772.1 333557.1 12661.91
6100 336289.6 64591.62 8177.548 8448.202 342031.3 886302.7 617769.6 31967.73
6200 1218730 42774.86 8656.748 7432.56 144232.9 1739696 354108.3 24835.15
6300 806752.3 52435.1 5284.119 10437.95 65406.88 1230662 463201.1 16395.43
6400 883487.4 71262.03 9085.406 13012.52 159522.5 1961859 592538.1 9778.8
6500 356991.8 57942.09 6845.589 10035.85 342189.3 7449092 413552.2 15096.89
6600 7184665 58905.42 6235.727 9108.961 181569.2 4618393 344374.2 12847.46
6700 2472007 71370.52 8063.353 9192.905 63416.47 2947551 440130 19738.05
6800 814416.1 71758.17 7341.346 7762.863 483430.6 2378077 299415.3 12519.29
6900 352288.7 69272.91 7223.732 6761.998 704382.9 7433083 365704.1 12034.6
7000 2570400 107659.3 15324.69 7525.827 159764.6 5042794 327737.8 10918.05
7100 219466.5 40054.32 5909.269 7208.585 400412.5 2689664 500218.3 10384.75
7200 2046770 62646.45 16789.61 8600.561 402128.4 4250481 341898 7711.287
7300 480427.1 54083.11 8680.044 9967.077 197295.2 7876661 144218.1 7864.698
7400 984593.3 93926.94 15979.23 8263.257 173903.8 6310541 193359.8 6853.023
7500 538978.8 74692.16 13873.01 5485.598 178533.8 10171802 152454.4 11444.25
7600 651062.6 145972.2 12457.06 6190.346 130058.9 2254320 77680.59 9727.429
7700 1073969 59510.66 11320.66 4617.416 156135 9508326 150271.7 9482.061
7800 610076.5 12976.09 17127.44 7731.529 1120081 7069702 49085.09 6581.255
7900 225100.4 21487.19 15915.88 8408.343 366767.7 11207608 44954.52 7738.051
8000 199603.1 22423.08 8493.198 10677.72 282558.9 5738164 59227 10044.92
8100 228689.7 28845.37 17272.49 6949.825 479576.6 18111974 68112.94 8505.341
8200 235564.2 24770.57 14323.23 9485.127 88964.38 5244861 62174.17 8277.375
8300 126557.8 14009.84 15116.83 10087.02 690523.8 6649965 33649.32 8678.38
8400 125826.9 26490.28 5467.11 5482.152 141400.3 11069663 24212.87 8326.598
8500 184564.5 35983.2 8759.442 6007.31 263091.2 19984712 20370.69 8973.215
8600 193700.3 40037.94 9611.534 3816.377 80663.02 12887875 30611.18 6877.555
8700 131844.8 19826.14 4457.578 5295.065 84227.77 5281593 25827.62 6758.053
8800 159574.4 48990.52 7797.417 4197.331 212060 75582376 23901.98 4165.291
8900 187651.8 19489.41 8147.741 5122.897 67214.51 5462595 23768.8 7202.69
9000 115416.6 49372.73 8275.986 4522.394 41884.84 12775294 24709.44 8464.759
9100 113973.8 44718.74 8977.323 4020.831 30371.49 6320431 21859.27 6555.091
9200 95768.52 44717.38 13144.78 5879.196 34368.44 5331262 20166.51 7530.378
9300 210090.5 38205.06 9531.072 5391.449 58940.26 6143711 24092.68 8377.303
9400 78048.02 27389.8 5589.521 4205.754 45726.12 7094071 13933.89 6444.306
9500 77830.83 12025.84 7426.871 5617.073 50402.64 11013728 17786.87 7362.991
9600 78440.59 21652.72 6946.194 6006.593 61894.7 7434160 14580.02 7317.252
9700 80058.74 13562.09 7524.327 6448.148 149280.6 5530012 18527.85 5951.523
9800 96350.42 48266.57 9335.1 4927.661 44235.29 34580910 10860.8 6998.772
9900 58123.4 18633.09 9792.201 6308.775 31676.58 7437323 9205.582 6894.294
10000 55742.19 35956.14 13261.41 8612.109 29911.54 13082393 13093.23 6222.705

62

Table A.5: Validation perplexity of each curriculum trained on line based wikitext-103 mea-

sured every 100 batches. Batches 5100-10000.

Batches Baseline Random Dependency Part of Speech Unigram Bigram Trigram Length

10100 88549.62 40304.27 13661.65 5588.294 31186.52 16643766 11505.52 6533.839
10200 98337.85 34261.52 5348.304 8566.059 28469.21 3852336 7258.558 7176.874
10300 47322.85 16611.63 7442.512 10287.06 42922.91 73284620 12194.78 7722.761
10400 45772.67 25105.38 11219.15 7169.95 32161.08 13315050 15309.94 8523.342
10500 58851 5647.017 11260.18 5710.395 28194.51 9781454 18709.42 8880.455
10600 53763.87 37941.77 3321.619 5918.338 23155.95 3818047 15440.06 8171.693
10700 65068 24284.45 5706.813 6225.834 23958.48 10583155 14497.16 5931.368
10800 57146.37 29989.32 6658.617 6290.858 20263.38 26375042 18258.13 6026.665
10900 87174.87 37592.69 6563.899 7539.073 23480.12 13366220 14391.71 5681.486
11000 262300.6 34450.24 6840.316 10874.94 19338.29 4964016 11612.11 4559.554
11100 94144.86 18909.7 8100.975 10786.89 23337.49 9985969 9333.398 5405.225
11200 42594.32 19272.31 4562.391 9537.154 30152.12 12950934 8763.369 5527.937
11300 159386.1 8380.708 5639.342 16820.3 25195.54 24968576 9791.053 5146.897
11400 136473.1 32503.12 7450.012 8285.1 11999.21 10727265 12366.25 4828.422
11500 154234.3 21173.09 4064.795 5776.649 8972.427 16446159 11109.62 5884.705
11600 212200 42542.97 6638.802 6924.856 31763.64 9586595 8522.553 5325.715
11700 28273.24 15763.57 6138.805 6202.253 23226.87 1.11E4-08 10217.99 5584.124
11800 94377.06 32340.02 6321.38 5979.011 20873.26 6928025 5410.511 5792.996
11900 202019.8 15339.94 6085.598 5099.169 24225.19 6798724 8848.321 5855.108
12000 103377 27182.9 7571.237 5749.055 19494.32 14127428 6620.839 5186.854

63

Table A.6: Validation perplexity of each curriculum trained on line based wikitext-103 mea-

sured every 100 batches. Batches 10100-12000.

Batches Baseline Random Dependency Part of Speech Unigram Bigram Trigram Length

0 133566.89 145170.9 157186.9 181081.6 145557 163357.2 154942.1 171047.1
100 12285.347 11508.72 11214.37 16152.97 13442.27 11411.47 12175.73 14221.94
200 6447.5767 6480.044 8555.388 7975.472 8173.018 7094.574 7406.791 7072.591
300 5332.4336 5936.535 8272.807 6656.56 6980.953 5789.997 5697.248 6202.389
400 5207.15 5223.892 5461.248 5642.629 5894.573 5175.929 5550.213 5249.547
500 7429.528 6913.467 5345.27 5224.565 9022.917 5192.218 4844.931 4852.713
600 6627.4604 4759.053 4770.627 4885.608 5370.834 5118.223 4742.507 4654.528
700 4769.9443 11728.62 4452.612 4528.794 4650.765 4768.857 4716.095 4302.28

800 3898.0117 4078.067 4383.075 4649.28 4734.933 3986.259 4436.026 4589.333
900 7385.8477 3638.641 4217.924 4347.232 5342.706 3807.823 4032.682 4067.242
1000 4610.644 3538.989 3972.509 4161.002 15954.95 4200.018 4312.525 4149.574
1100 8622.547 3115.556 3737.612 4033.674 4617.307 5521.467 3553.627 3821.32

1200 8631.456 3200.954 3666.757 4237.244 3974.965 5088.36 3428.275 4078.638
1300 2980.604 3875.604 3463.381 3588.603 3340.407 3399.381 3372.226 3683.903
1400 3539.7998 3630.569 3331.502 3611.937 3219.224 3757.146 5257.478 3687.256
1500 3035.7773 2963.425 3455.519 3978.28 4819.782 3602.563 3591.551 3593.675
1600 2589.6614 3252.407 3621.878 3732.493 4355.743 3276.338 3857.337 3438.57

1700 3098.1157 3141.189 3216.005 3768.428 4081.203 3389.714 3384.101 3790.884
1800 3428.1082 2522.237 3475.266 3735.106 3026.908 3103.072 3821.906 3335.825
1900 2923.9253 3033.856 3818.332 3650.337 3948.062 2993.07 4274.857 3396.03

2000 3024.5503 4015.455 3462.04 3686.353 4419.2 3353.64 3111.692 3499.381
2100 4984.682 5106.585 3339.451 3206.319 6102.428 3008.452 6180.235 3381.545
2200 3904.0237 4004.407 3499.03 3180.93 5009.597 4163.797 5390.852 3248.532
2300 3326.3901 4438.087 3309.986 3827.221 4498.915 5244.173 4708.613 3237.241
2400 3617.3625 3705.34 3321.961 3443.669 7043.6 5192.322 5087.759 3612.678
2500 3426.1863 3493.156 3101.16 3278.573 5294.611 3262.285 5959.082 3029.704
2600 3929.536 2989.818 3169.209 3348.961 4787.855 4064.311 7771.3 3839.325
2700 3318.4084 2877.347 3041.625 3465.139 3686.567 3402.472 5554.846 3434.443
2800 2798.2139 2729.84 3553.2 3015.829 6963.724 3806.571 5296.702 3893.353
2900 2653.2427 3578.958 3330.19 3079.564 6497.482 3760.58 3342.895 3861.117
3000 2671.6992 3000.713 3196.162 3112.699 3264.097 4493.842 5113.974 4389.064
3100 2956.447 3357.973 3479.73 3169.381 3712.669 3669.551 5344.856 4664.851
3200 3287.3135 3001.875 3196.72 2764.877 4382.15 3182.293 3989.385 3054.209
3300 2486.855 2674.501 3894.077 3264.268 3460.631 4561.381 5568.212 2944.834
3400 3681.2234 3264.878 3909.351 2989.094 3445.657 2945.227 3972.854 4048.585
3500 3042.2605 2669.779 3652.555 2723.573 4546.983 4400.884 5114.647 3656.315
3600 3042.0315 3091.007 4027.494 3650.473 5930.231 3982.463 6214.663 4501.413
3700 3043.7842 3014.716 3912.738 3008.312 3147.093 3602.845 6376.496 2952.597
3800 3102.6042 3313.633 3447.961 3930.166 3914.254 3298.151 5062.238 3494.175
3900 3013.213 2299.637 4141.134 3733.276 5935.788 4126.57 5946.967 3836.997
4000 3759.0522 2979.182 3887.857 3650.793 4862.929 4629.568 6099.234 2529.98

4100 3668.0715 3541.252 3407.547 3026.772 4674.399 3848.662 5993.873 2789.232
4200 2730.591 3756.239 4172.849 3658.614 3783.238 3288.383 4222.746 3993.321
4300 3949.8096 2681.376 4080.428 3128.34 4029.699 3868.773 3971.199 3006.097
4400 3323.0835 2296.129 2628.662 2761.743 4746.249 4753.029 4173.327 4290.566
4500 3658.6946 3549.945 2943.47 3554.22 4932.861 3854.719 4499.232 4120.625
4600 3498.2964 2664.737 2869.677 2947.416 5012.292 5464.019 5441.119 3875.83

4700 3218.3953 2993.687 2914.067 2931.284 5009.84 5457.208 4473.262 3604.246
4800 3705.17 3623.094 3179.02 3024.836 4351.454 7997.697 7150.244 2385.476
4900 3371.4956 3825.662 3449.096 2820.489 4956.879 5906.345 4408.281 3551.005
5000 3406.368 3478.585 3437.806 3316.647 5550.663 5213.405 7000.541 3251.957
5100 3658.293 3001.878 2934.582 3339.919 4153.177 5386.484 4569.976 4214.997
5200 4194.59 3349.578 2663.698 4014.084 4672.335 4513.1 6939.784 3541.404
5300 3139.5151 3182.787 3781.348 2353.679 4483.329 8713.253 7396.936 3471.748
5400 3214.4783 3224.414 4276.697 4426.463 3902.706 7097.28 5437.933 3852.584
5500 3932.4114 3201.333 2812.856 3057.271 4108.582 5330.817 7914.916 2754.497

64

Table A.7: Validation perplexity of each curriculum trained on sentence based wikitext-103

measured every 100 batches. First 5500 batches.

Batches Baseline Random Dependency Part of Speech Unigram Bigram Trigram Length
5600 2864.2917 3627.737 3003.349 2815.709 4386.842 4327.014 5232.348 2702.415
5700 3538.355 3176.168 3046.171 3060.973 3772.631 5686.305 7596.855 3421.795
5800 3252.9683 3272.469 2486.868 4196.891 5201.184 5386.043 6068.738 3089.486
5900 3131.4595 3539.543 2635.31 2772.455 5381.719 7309.636 6318.746 3442.756
6000 2794.038 3587.836 2825.41 3244.816 5596.753 6640.867 7775.148 3509.842
6100 3251.644 3263.527 2918.197 3100.223 3635.773 5764.608 6505.952 3940.546
6200 3002.94 3363.021 2487.748 3734.48 4609.224 6966.229 6210.936 3022.155
6300 3218.558 3161.412 2762.742 3631.77 4138.99 6753.394 7590.026 2781.639
6400 3168.3445 2745.09 2539.634 2845.859 3643.194 5790.03 5593.007 3362.367
6500 3563.9138 2631.605 2615.582 3017.273 5498.478 8534.298 6150.414 2755.562
6600 3336.5125 3152.491 2045.112 3510.307 6806.122 6820.456 8015.877 1892.766
6700 3095.4402 3280.077 2363.671 2707.773 4330.916 7460.527 6372.921 2842.231
6800 3707.2769 3402.757 2401.957 3146.946 5093.779 5133.348 5852.205 3127.991
6900 2563.3862 2491.408 3224.506 2928.696 5140.863 5176.373 6588.458 2814.376
7000 2950.2212 2558.31 3351.246 2230.343 5639.729 6032.242 6812.246 2852.699
7100 3118.5103 2508.693 2510.393 3488.994 7993.922 5985.55 7232.887 3199.032
7200 2862.5986 3386.939 3137.043 3367.331 4575.148 5486.356 7562.751 2948.376
7300 3581.2903 3661.634 3901.34 3907.249 5122.223 6055.366 10125.68 2535.578
7400 2722.6355 3448.971 3190.647 3167.26 5884.57 6804.227 5294.717 2535.351
7500 3889.6006 3437.576 3360.645 2520.448 5903.479 8383.122 6737.35 2751.326
7600 3435.7764 3023.607 3594.426 2703.097 6273.879 4891.422 6465.556 2662.755
7700 2684.486 3649.864 3326.815 2410.613 6438.52 4077.892 8025.103 2668.974
7800 4623.788 3301.87 3548.683 3013.871 7893.651 4928.719 6681.804 2631.33
7900 4340.479 3161.765 3719.331 2770.811 4452.123 3993.706 7188.245 2779.878
8000 3961.5264 3807.014 3452.459 2907.043 3954.853 4021.901 7929.308 2643.695
8100 3549.708 3812.812 3715.364 2949.986 4943.123 5520.156 5313.925 2967.196
8200 2721.3855 4309.146 3804.868 3194.562 4426.138 4493.306 4023.474 2833.751
8300 3770.7717 4154.175 3602.226 2562.071 4908.361 4478.966 4814.494 2852.929
8400 2819.1184 3395.214 2647.107 2739.021 4440.539 3912.589 4741.123 2516.4
8500 2855.0764 4537.215 2495.408 3064.236 5412.395 3348.591 5236.132 2208.325
8600 3505.9644 5123.063 2870.41 2727.767 5053.71 3948.653 4403.252 2785.527
8700 2836.03 2766.154 2849.205 3117.907 5864.273 3649.038 5827.049 2355.334
8800 2745.462 4155.193 2720.012 3277.113 5727.051 4311.576 4987.207 2098.654
8900 2791.9512 3517.63 2800.61 2664.944 6971.113 3963.825 5239.959 2229.124
9000 3544.8262 2923.488 3053.754 3133.222 6793.178 3378.838 6722.614 2413.132
9100 3718.3665 4568.477 2841.7 3127.884 4710.665 4798.744 5396.799 2281.898
9200 2808.6433 2312.481 1903.869 2207.872 4649.204 3642.391 5320.887 2199.175
9300 2165.4578 3975.026 2209.777 2472.435 3676.473 5090.67 5474.493 2135.631
9400 2339.3792 5000.876 2221.992 2454.856 5797.444 4136.993 5279.44 2281.424
9500 2696.5264 4750.741 2413.11 2918.894 6209.71 5272.023 6008.77 2130.816
9600 3324.4998 6199.148 1773.672 2194.82 4300.943 7148.329 4094.777 2508.34
9700 2773.0059 8854.468 2118.811 2509.108 4839.8 3611.947 5180.166 2075.662
9800 3280.1736 4203.143 1835.579 2932.314 4556.438 3910.895 5137.227 2268.739
9900 3473.049 3118.263 2283.341 2728.226 4778.486 4880.072 4650.047 2173.566
10000 3186.8086 5426.308 2254.678 2943.919 4426.129 2952.908 5637.761 2230.848
10100 2909.2644 4874.029 2301.296 2268.375 4064.935 4881.747 5865.94 2422.808
10200 2970.3079 4136.014 1920.374 2401.191 4241.271 4340.136 4660.822 2176.211
10300 4404.0874 3743.304 2076.806 2608.362 2282.178 4047.018 5157.879 2288.977
10400 2650.5618 5259.514 1997.169 2377.451 4587.451 3908.919 4345.876 2457.326
10500 3188.861 4863.026 1921.195 3030.305 3993.9 4020.728 5001.028 2137.973
10600 2928.7676 5619.987 2021.615 1937.735 6627.106 3641.662 5715.097 2114.58
10700 2990.6763 4632.581 1891.141 2465.603 5435.766 3554.868 4419.398 2176.237
10800 3106.0146 4674.662 2052.121 2789.199 3919.651 4020.114 4256.856 1980.449
10900 3359.8572 4426.294 2156.759 2719.192 4010.09 3295.575 4190.228 2470.908

65

Table A.8: Validation perplexity of each curriculum trained on sentence based wikitext-103

measured every 100 batches. Batches 5600-10900.

Batches Baseline Random Dependency Part of Speech Unigram Bigram Trigram Length

11000 262300.6 34450.24 6840.316 10874.94 19338.29 4964016 11612.11 4559.554
11100 2600.6765 4998.616 2287.749 2902.101 3135.488 5292.259 4984.297 2497.218
11200 2697.7224 5610.622 2237.043 3115.647 2486.967 3883.755 4174.605 2403.552
11300 3249.2195 3319.064 2291.24 3233.927 3354.398 3823.685 3968.204 1961.928
11400 2947.6704 3926.981 1995.444 3182.323 4094.028 3279.589 3376.812 1822.583
11500 2266.9912 3061.715 1997.625 2737.797 4591.544 2559.695 3850.975 2051.783
11600 1910.9951 3633.076 2017.666 2339.021 4046.791 4028.116 3389.805 1911.797
11700 2703.9133 3730.606 2161.455 2292.595 4232.192 3396.06 3526.608 1887.096
11800 1997.3059 3413.994 2171.736 2602.599 6137.459 3386.59 3847.157 2001.94

11900 2472.8403 3623.55 2011.956 2686.452 3209.035 3684.933 3470.721 2055.052
12000 2580.0857 3236.756 2047.223 2287.82 4252.911 2692.896 3619.992 2211.584
12100 2462.5713 3107.209 2061.792 2409.757 4442.029 2022.006 3572.707 1738.626
12200 2386.6958 3270.702 1742.09 2218.87 3714.259 3032.846 3149.919 2231.156
12300 2010.5862 3375.562 1971.577 2276.157 5888.235 3010.039 4748.44 2376.187
12400 3649.7207 3523.468 1807.192 2140.037 2789.801 2627.215 3046.564 2197.488
12500 3616.9211 2527.415 2066.436 2079.851 4106.784 3907.022 3353.525 2315.153
12600 3447.208 3352.406 2161.191 2616.749 2996.938 4944.613 3134.28 2356.557
12700 3567.5286 2887.539 1850.102 2555.376 4026.019 5691.963 4392.883 1837.156
12800 3496.0151 3070.08 2051.071 2613.339 3699.5 4996.399 3595.804 1779.349
12900 2957.0505 2200.042 2029.144 2694.993 2655.597 4044.406 3979.509 1772.636
13000 2889.5964 2821.793 1962.677 2848.288 4612.958 4555.686 3244.529 1971.573
13100 2884.492 3042.716 2148.672 2278.382 3911.167 4696.947 3596.171 1991.141
13200 3089.082 2329.917 2051.666 2415.661 4331.807 4364.996 3576.048 2060.151
13300 3780.2158 2874.229 2148.193 2687.167 3905.77 4439.62 3330.12 2088.202
13400 2475.67 3946.725 1880.399 2624.047 4216.894 4043.237 3692.884 1956.24

13500 2391.5706 4227.497 1702.377 2825.495 3614.787 2928.353 3596.696 2102.339
13600 2178.5073 3532.708 2186.421 2787.64 2999.277 3202.496 3107.828 1650.679
13700 3008.851 2929.372 1758.434 2765.942 3707.263 4550.124 3509.052 1763.421
13800 2215.242 3245.225 1685.312 2763.713 4098.856 2509.298 3393.489 1802.992
13900 2460.976 3058.251 1958.757 2428.149 5447.126 3144.837 3197.692 1417.536
14000 2944.5322 3279.467 1856.194 2358.343 4116.395 3639.197 3004.733 1386.126
14100 2243.2942 3078.41 1875.342 2476.079 4168.629 4346.108 2838.907 1855.109
14200 2629.6426 3068.33 1520.55 2496.886 4298.392 3075.109 3678.563 1891.769
14300 2368.2566 3311.473 2274.057 2409.711 3852.69 2250.046 3635.187 1708.987
14400 2550.2156 2957.337 2546.271 2676.356 3802.065 2900.622 3531.421 1751.901
14500 3179.2258 2918.599 3736.432 2196.153 4384.977 3041.994 3737.262 1747.746
14600 2960.2913 2671.386 1978.412 2186.668 3883.192 3858.036 3759.196 1799.298
14700 2556.041 2622.209 2180.598 2400.547 3716.956 2847.02 3890.97 1868.855
14800 2944.977 2724.473 1908.646 2003.582 2287.438 2827.39 3519.482 1935.015
14900 3058.9365 3159.76 1791.704 2110.232 4458.922 4601.517 3644.684 1814.54

15000 3373.5347 3268.794 1731.719 2115.681 4234.21 2655.245 3602.088 1910.209
15100 3619.1846 3525.784 2091.911 2336.762 3716.094 2779.542 3231.95 1780.052
15200 3959.872 3215.453 1916.56 2132.752 3879.117 3125.468 3430.319 1701.954
15300 4391.342 3927.056 1975.358 2348.073 5354.714 2415.163 3068.784 1756.15

15400 4431.6123 3377.846 1849.331 2047.901 4445.123 2385.826 3000.101 1726.074
15500 3709.352 3503.648 2244.007 2412.537 3740.15 2438.061 3197.201 1730.452
15600 4916.862 3641.964 1946.571 2569.364 5624.819 2265.686 3404.546 1756.93

15700 4265.769 3650.713 1639.628 2648.778 6393.979 2677.095 2602.288 1705.534
15800 3012.003 2658.754 2292.661 2545.123 4097.075 2777.115 3035.369 1756.578
15900 4748.132 2635.553 2167.567 1949.89 7333.727 2663.09 3760.357 1672.691
16000 3591.87 2848.635 1961.523 1914.378 8042.142 4309.771 2692.323 1816.02

16100 5728.612 2913.521 2280.985 1848.195 5667.022 2690.273 2760.998 1578.525
16200 3709.089 3093.82 2017.133 1913.861 5655.845 3693.841 2730.397 1663.372
16300 5435.975 2588.199 2200.272 1741.35 4931.408 2095.966 2910.535 1691.521
16400 3899.814 2816.65 2143.566 1520.613 5432.34 3398.078 2736.456 1738.191
16500 5760.409 2858.464 2046.358 1679.481 4213.457 5952.215 2700.678 1779.349

66

Table A.9: Validation perplexity of each curriculum trained on sentence based wikitext-103

measured every 100 batches. Batches 11100-16500.

Batches Baseline Random Dependency Part of Speech Unigram Bigram Trigram Length
16600 5474.128 2884.826 1884.325 1786.089 5583.255 3653.356 2235.502 1701.01
16700 5394.362 2830.033 1613.511 1855.339 5332.088 3604.594 2763.783 1802.436
16800 2142.807 3056.592 1726.021 1743.585 4894.997 3832.360 3168.774 1777.959
16900 3653.911 2477.513 1876.478 1717.887 4702.398 3547.463 3506.964 1538.599
17000 2623.699 2864.975 1814.027 1837.478 5624.287 2961.518 3777.023 1642.067
17100 3946.361 2881.194 1573.796 1626.424 5477.412 5801.621 4522.428 1686.476
17200 3931.53 2960.243 1825.012 1729.626 3872.457 5079.338 3204.623 1665.452
17300 2483.086 3014.486 1674.596 1863.654 4254.981 4786.290 2864.236 1625.513
17400 2201.756 2845.112 1661.79 1918.791 4660.876 3303.216 3083.025 1623.081
17500 3762.044 3017.391 1963.165 1948.196 4514.555 3630.837 2700.909 1610.702
17600 1916.478 3334.092 1713.173 1566.398 6403.468 5796.097 2827.983 1589.058
17700 2133.296 3893.108 1615.585 1793.384 6750.477 2867.517 2806.61 1594.783
17800 3443.813 4011.528 1590.357 1629.844 7231.735 5932.110 2400.474 1675.2
17900 3704.21 3190.787 1469.256 1593.947 6466.648 3567.406 2875.86 1626.964
18000 5203.719 3181.392 1228.67 1533.493 6644.731 3736.544 2382.266 1669.715
18100 2668.049 2297.651 1099.461 1610.487 3970.642 5157.464 2630.59 1716.483
18200 4370.502 2572.062 1273.885 1482.608 3078.424 5397.142 2872.213 1694.746
18300 5140.358 2410.223 1444.652 1588.948 3883.507 4110.709 2288.334 1652.913
18400 4342.102 2519.764 1502.864 1594.955 2383.756 4526.784 2733.952 1639.476
18500 4314.982 2582.652 1734.776 1653.818 4777.05 4260.981 2298.712 1679.498
18600 3823.823 2107.931 1651.656 1625.005 3894.389 4925.690 2919.162 1657.156
18700 3579.227 2221.069 1889.513 1596.393 6128.305 2497.559 2705.167 1640.252
18800 4485.336 2294.088 1851.501 1382.937 7034.37 4672.204 2903.462 1601.016
18900 3450.497 2346.806 1466.698 1575.33 6894.88 3873.480 2945.7 1504.928

Table A.10: Validation perplexity of each

67

curriculum trained on sentence based wikitext-103

measured every 100 batches. Batches 16600-18900.

6000 -

(=]

&
8

Perplexity

2000 -

i i
0 5000

i
15000

68

Curriculum
= Baseline

== Bigram
== DEP
=== Length
= P05
=== Bandom
s Trigram

== Jnigram

Figure A.1: Validation perplexity of each curriculum trained on sentence based wikitext-103

measured every 100 batches.

69

Curriculum
= Bigram

DEFP

90000000 -

=== Length

e0000000 -
e POS
I === Random

Perplexity

s Trigram

30000000 - —— Unigram

0-
i i i
7500 10000 12500

i i
2500 5000
Batches

Figure A.2: Validation perplexity of each curriculum trained on line based wikitext-103

measured every 100 batches. Bigram performance is removed for ease of interpretation.

70

2000000 -
1500000 - i
Curriculum
s JEP
= Length
p
% 1000000 - === PO5
E = Random
| = Trigram
== Unigram
500000 - l

i i i
7500 10000 12500

i i
2500 5000
Batches

Figure A.3: Validation perplexity of each curriculum trained on line based wikitext-103

measured every 100 batches. Bigram and Baseline performance is removed for ease of inter-

pretation.

71

900000 -
Curriculum
e DEP
>
=
X 600000 - Length
= F R
-
& === Random
| JRigram
300000 -
0. .
i i i i i i
0 2500 5000 7500 10000 12500
Batches
Figure A.4: Validation perplexity of each curriculum trained on line based wikitext-103

measured every 100 batches. Bigram, trigram, and Baseline performance is removed for ease

of interpretation.

200000 -

150000 -

100000 -

Perplexity

50000 -

72

Curriculum
s [JEP

=== Length

= Random

Figure A.5: Validation perplexity of each curriculum trained on line based wikitext-103 mea-

sured every 100 batches. Unigram, Bigram, Trigram and Baseline performance is removed

for ease of interpretation.

73

VITA

Daniel Campos is a PhD student at the University of Illinois Urbana-Champaign where
he is working on next generation NLP systems focused on chemistry, agriculture, and truly

personal search. spacemanidol@gmail. com.

	List of Figures
	List of Tables
	Glossary
	Introduction
	Overview
	Curriculum Learning
	Representing Language
	Goals and Challenges
	Contributions and Findings
	Structure of This Dissertation
	Statement of Originality

	Prior Work
	Architecture
	Learning Methods
	Language Modeling
	Evaluation

	Research Approach
	Experiment Structure
	Curriculum Construction Methods
	Model Training and Evaluation

	Results
	Corpus Replacement Style Curricula
	Competence-Based Curricula
	Discussion

	Conclusion
	Future Work
	Bibliography
	Experimental Results
	Corpus Replacement Style
	Competence Based Curriculum

