
© 2023 Daniel Campos

EFFICIENT AND ROBUST WEB SCALE LANGUAGE MODEL BASED RETRIEVAL,
GENERATION, AND UNDERSTANDING

BY

DANIEL CAMPOS

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2023

Urbana, Illinois

Doctoral Committee:

Professor Cheng Xiang Zhai
Dr. Alessandro Magnani (Walmart Labs, External Member)
Professor Jiawei Han
Professor Kevin Chang

ABSTRACT

Large language models effectively generate contextualized word representations across

languages, domains, and tasks. Drive by these abilities, these models have become a build-

ing staple for many researchers and engineers who use text as their medium of representation,

much like concrete is a staple in the construction world. Via the broad study and imple-

mentation, problems with large models have come to light: they can be expensive, brittle to

noise, and produce unwanted outputs. Their large size and computational overhead make

them difficult and costly to deploy and use for inference. Minor variations in text inputs,

such as typos or misspellings, can cause significant losses in model accuracy. Seeking to

improve how these models can be used for real world usage and deployments, this thesis fo-

cuses on approaches for improving performance by compressing, hardening, and optimizing

models’ performance based on deployment needs. To explore the challenges with large-

scale deployments concerning robustness and inference efficiency, we explore four commonly

used language workloads: textual understanding and classification, passage retrieval, and

text generation. We chose these broad but connected tasks to ensure that our compres-

sion approaches broadly apply to natural language processing. First, we propose a general

framework for improving model inference on broad language understanding workloads by

studying how unstructured pruning, structured pruning, and quantization can be leveraged

to compress models and improve inference speeds. Second, we examine how models can

be deployed for usage in web-scale generation and understanding workloads. Leveraging

multi-task modeling, asymmetrical pruning, knowledge distillation, and quantization allows

for cost-efficient scaling to web-scale workloads. Third, we explore methods of tuning and

optimizing dense retrieval methods post-training to ensure they perform well on real-world

data. Our experiments yield simple and effective ways of increasing model robustness and

decreasing inference costs without any need for retraining or index re-generation. Finally,

we discuss future work, focusing on sequential compression approaches to sequence LLMs to

allow generative workloads to reach web-scale deployments.

ii

To my wife, Zoe, and my sons, Theodore and Oliver. I would not have finished without you

supporting my vision and encouraging me to power through.

iii

ACKNOWLEDGMENTS

This thesis project would not have been possible without the support of many people.
Thanks to my adviser, Cheng Xiang Zhai, who helped shape the vision and helped clarify
and focus. Also, thanks to my committee members, Alessandro Magnani, Jiawei Han, and
Kevin Chang, for their feedback and guidance. Thank you to all the great companies I could
work with along the way, Neural Magic, Qualtrics, Walmart, and Neeva. Finally, thanks
to my wife, parents, and numerous friends who endured this long process with me, always
offering support and love.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Thesis Contributions . 3
1.4 Document Structure Overview . 5

CHAPTER 2 LITERATURE REVIEW . 6
2.1 Overview . 6
2.2 Language Models . 6
2.3 Model Compression . 8
2.4 Neural Methods For Information Retrieval 12
2.5 Sequence to Sequence Modeling . 14

CHAPTER 3 INTRODUCING AND TRANSFERRING SPARSITY FOR EFFI-
CIENT AUTO-ENCODER INFERENCE . 17
3.1 Overview . 17
3.2 The Optimal BERT Surgeon: Scalable and Accurate Second-Order Prun-

ing For Large Language Models . 17
3.3 Sparse*BERT: Sparse Models Generalize To New Tasks and Domains 32
3.4 oBERTa: Improving Sparse Transfer Learning Via Improved Initialization,

Distillation, and Pruning Regimes . 44
3.5 Conclusion and Key Takeaways . 58

CHAPTER 4 ROBUST AND EFFICIENT SEMANTIC RETRIEVAL 60
4.1 Overview . 60
4.2 Quick Dense Retrievers Consume KALE: Post Training Kullback Leibler

Alignment Of Embeddings For Asymmetrical Dual Encoders 60
4.3 Noise-Robust Dense Retrieval Via Contrastive Alignment Post Training . . . 74
4.4 Expanding Contrastive Alignment . 84
4.5 Conclusion and Key Takeaways . 86

CHAPTER 5 SCALING MULTI-LINGUAL CLASSIFICATION AND ABSTRAC-
TIVE SUMMARIZATION TO WEB-SCALE WORKLOADS 88
5.1 Overview . 88
5.2 Compressing Cross-Lingual Multi-task Models at Qualtrics 88
5.3 To Asymmetry and Beyond: Structured Pruning of Sequence to Sequence

Models For Improved Inference Efficiency . 102
5.4 Discussion . 112
5.5 Conclusion and Key Takeaways . 114

v

CHAPTER 6 CONCLUSION . 116
6.1 Overview . 116
6.2 Train Large Then Compress . 116
6.3 Web Scale Deployments Are All About Trade-offs 117
6.4 Compression Approaches Are Additive and Adaptable 118
6.5 Representation Alignment Is Crucial . 119
6.6 Limitations . 119
6.7 Future Work . 119
6.8 Publications . 121

APPENDIX A INTRODUCING AND TRANSFERRING SPARSITY FOR EF-
FICIENT INFERENCE . 122
A.1 The Optimal BERT Surgeon: Scalable and Accurate Second-Order Prun-

ing for Large Language Models . 122
A.2 oBERTa: Improving Sparse Transfer Learning Via Improved Initialization,

Distillation, and Pruning Regimes . 134

APPENDIX B ROBUST AND EFFICIENT SEMANTIC RETRIEVAL 148
B.1 Quick Dense Retrievers Consume KALE: Post Training Kullback Leibler

Alignment of Embeddings for Asymmetrical Dual Encoders 148
B.2 Noise-Robust Dense Retrieval via Contrastive Alignment Post Training . . . 152

APPENDIX C SCALING MULTI-LINGUAL CLASSIFICATION AND ABSTRAC-
TIVE SUMMARIZATION TO WEB-SCALE WORKLOADS 172
C.1 To Asymmetry and Beyond: Structured Pruning of Sequence to Sequence

Models for Improved Inference Efficiency . 172

REFERENCES . 180

vi

CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

Computers and computational devices have long been improving how humans think and

act. At first, using a computer required large rooms of specialized equipment and expert op-

erators. Since then, decades of gradual improvements led to the proliferation of cell phones

and virtual supercomputers, which reside in the pockets of billions of people around the

globe. These ubiquitous computing devices have become the interface that has brought the

world into a truly connected mesh interface. Sharing one’s daily experiences with thousands

of viewers worldwide with little or no delay is not only possible but as common as driving a

car.

In the world of artificial intelligence and natural language processing, there have also been

decades of continuous improvement, which have led to models which can do truly impressive

feats. Decades ago, it seemed far-fetched that one could ask a system obscure questions and

receive the correct answer. Not only can this be done, but questions can come in spoken

language, and responses sound natural despite their technological origin.

While personal computing devices can empower incredible experiences, most processing does

not happen on devices. Instead, most of the work happens in large data centers where

economies of scale allow for cost-effective and failure-resistant infrastructure. Using cus-

tomized deployments, services assemble their experiences by customizing complex workflows

and experiences given their customer needs and constraints.

While all data center/cloud workloads are growing, those which support neural network

models have grown exponentially. Models have grown from millions of parameters [1] to

billions of [2] and will likely reach trillions [3].

Despite the eye-catching growth of the model size, the widespread adoption of these models

will likely drive further computational burden. In the earlier part of the 2010s, few compa-

nies were training AI models, and even fewer were using them. In 2022 79% of companies

had at least 3 models in production, up 17% from a year before 1 2.

In natural language processing, major advances have been driven by the proliferation of large

models. One of the primary goals of natural language processing is to understand human

language in all its intricacies and uniqueness. Word representations created by using large

textual corpora like GLoVE [4] and Word2Vec [5] allowed for major improvements in tasks

1https://www2.deloitte.com/us/en/pages/consulting/articles/state-of-ai-2022.html
2https://www2.deloitte.com/us/en/pages/about-deloitte/articles/press-releases/deloitte-state-of-ai-

fourth-edition-report.html

1

like sentiment analysis [6] and question answering [7] [8].

These non-contextual methods provided a simple but effective vector representation, allow-

ing significant language understanding and representation improvements. The field then

experienced an explosion of new models and techniques with the arrival of the attention

mechanism and large-scale self-supervised pretraining. These two forces collided to create

countless large language models such as BERT [9], GPT-2 [10], T5 [11], PALM [12], etc.

1.2 MOTIVATION

The usage of large language models has driven debate about their shortcomings, such as

the biases they encode [13] [14], the extent to which they understand language [15] [16], and

their environmental impact [17] [18]. Despite these challenges, the deployment and usage

of these models have been explosive, with thousands of companies deploying unique models

optimized to their business needs. Language models are running in search engines like Bing
3and Google 4, in intelligent assistants like Siri and Alexa [19] and in many specialized use

cases all of which are running billions of inference sessions.

The scale of language model deployment has motivated tremendous research into improving

the shortcomings. Minor model accuracy and efficiency improvements can lead to millions of

dollars in cost savings and empower new usage scenarios that previously seemed impossible.

The scale of impact which even minor improvements in inference costs can cause has led to

the creation of specialized companies like Neural Magic, Modular AI, OctoML, and DECI, to

mention a few. Collectively, they have received hundreds of millions of dollars of investment
5 6 7 to explore and commercialize improvements in model inference efficiency.

Large models’ accuracy and ability to tackle diverse tasks without specialized understanding

have led to treating models like large opaque boxes. Unlike the interpretable and inspectable

decision trees they commonly replace, neural models provide little insight into predictions.

As a result, large-scale deployments favor treating models as immutable units.

3https://azure.microsoft.com/en-us/blog/bing-delivers-its-largest-improvement-in-search-experience-
using-azure-gpus/

4https://blog.google/products/search/search-language-understanding-bert/
5https://deci.ai/news/deci-raises-25m-accelerate-ai-productization/
6https://techcrunch.com/2021/11/01/octoml-raises-85m-for-it-for-its-machine-learning-acceleration-

platform/
7https://neuralmagic.com/blog/neural-magic-series-a/

2

1.3 THESIS CONTRIBUTIONS

To address the challenges in deploying language models in web-scale workloads, this

study studies approaches in compression and augmentation to improve robustness. The

contributions of this work vary from highly applied experimental results to broad experiments

and methodologies, all of which seek to inform on broadly applicable methods of making

language models ready for large-scale production workloads. Specifically, this thesis makes

three lines of technical contributions which are explained in detail below.

1.3.1 Introducing and Transferring Sparsity For Efficient Inference

Language models have favored scaling model size because performance improves with

scale [20] [21] and large models are more sample efficient [22]. This tendency to favor larger

models often means that models are often over-parameterized and can greatly be compressed

without large losses in accuracy. Compression methods vary in implementation and prac-

tice, but at their core, they seek to decrease the model size or computational cost without

sacrificing a larger model’s expressiveness. The Lottery Ticker Hypothesis, [23], [24] the

finding that some or many sub-networks approximate the original network’s performance

has helped direct research into the introduction of structured and unstructured sparsity into

models. Removing portions of the model greatly increases inference efficiency because the

entire network is not needed to be executed simultaneously.

We explore how unstructured sparsity can be used for efficient inference in our work The

Optimal BERT Surgeon [25] finding that we are able to remove 90% of network weights

with little impact to model accuracy. We build on this work in Sparse*BERT [26] where

we demonstrate that compressed models are to transfer to novel domains and tasks during

pretraining without any specialized training or loss in accuracy. We extend this work to

novel model types and training regimes in oBERTa: Improving Sparse Transfer Learning

via improved initialization, distillation, and pruning regimes [27]. Broadly, our work demon-

strates how combining unstructured sparsity and quantization with a sparsity-aware serving

framework such as DeepSparse 8 or TensorRT 9 model inference can be sped up over 30x.
10.

8https://github.com/neuralmagic/deepsparse
9https://developer.nvidia.com/tensorrt

10https://neuralmagic.com/blog/obert/

3

1.3.2 Robust and Efficient Semantic Retrieval

Using bi-encoders and vector-based representations of documents and queries has led to

major advances in information retrieval [28]. Leveraging language models as vector represen-

tation has led to effective and scalable semantic search, which can be applied to e-commerce

[29] [30], question answering [31], and web search [32].

Despite the retrieval ability of bi-encoder usage in the real world can be difficult because

of their sensitivity to typos and noise [33] and inherited difficulty in scaling workload as

they are based on compute-hungry transformers. We study how bi-encoder models perform

with noisy queries in our work Noise-Robust Dense Retrieval via Contrastive Alignment

Post Training [34]. Contrastive Alignment Post Training, we can reduce accuracy losses on

queries with typos by 55% without model retraining nor index regeneration.

Building on the simplicity of post-training modular optimization, we explore how to im-

prove inference efficiency in Quick Dense Retrievers Consume KALE: Post Training Kull-

back–Leibler Alignment of Embeddings for Asymmetrical dual encoders [35]. Leveraging

post-training compression and representation alignment, we demonstrate that it is possible

to improve inference efficiency by over 4x with only minor losses in retrieval accuracy.

1.3.3 Scaling Multi-Lingual Classification and Abstractive Summarization to Web-Scale
workloads

While advances in language model quality have driven wide adoption for production

workflows scaling the models to web-scale workload can prove difficult. Even minor com-

pression improvements can save millions of dollars when scaling to consistent large inference

workloads associated with web-scale usage.

The use of sequence-to-sequence models has led to massive improvement in machine trans-

lation [36], abstractive summarization [37] and speech/audio transcription [38]. Part of the

success of these models is driven by their ability to map an input to an output despite

variability in length, type, or even domain. While effective, these models carry a high com-

putational load as their architecture can be full of inefficiencies. While the encoder portion

of the model runs once on the input, the decoder produces outputs iteratively until the end

of the input tag is produced. As a result, usage can become bottle-necked when decoders

produce long inputs, and performing batch processing results in non-optimal computing us-

age as outputs have differing lengths.

In To Asymmetry and Beyond: Structured Pruning of Sequence to Sequence Models for Im-

proved Inference Efficiency [39], we explore the interplay between scale, model symmetry,

pruning, and inference efficiency. Using T5 models on the XSUM [40] and CNN/DailyMail

4

[41], we show evidence that a deep encoder and shallow decoder is optimal and can lead to

nearly 3x speedups in inference efficiency with less than 2 points lost in ROUGE-2.

In language understanding and text classification, traditional language models like BERT [9]

are monolingual by design and focus on being used only for the language they were trained

in. While using machine translation as a processing step can provide effective predictions

[42], this approach requires additional inference and effective machine translation between

all languages. Multi-Lingual language modeling seeks to avoid the difficulties of mass trans-

lation or many monolingual language models by simultaneously training a representation

for many languages. This approach has widespread usage and is used for broad language

agnostic question-answering classification and generation.

Using language models has become a natural part of the text-understanding toolkit for

companies focusing on understanding customer insight. At Qualtrics, workloads exist for

extracting insights from customer feedback, such as sentiment, emotion, topics, and ac-

tionability. While multi-lingual language models such as XLM-R [43] allow classification

workloads a simple and effective path to multi-linguality, their size can make web-scale de-

ployments expensive and difficult.

In our work Compressing Cross-Lingual Multi-Task Models at Qualtrics [44], we study how

the use of quantization, multi-task learning, and knowledge distillation to improve model

performance by 15x with minor losses in accuracy. In this work, we highlight the impact

of leveraging knowledge distillation during fine-tuning and the importance of distilling from

task-optimized teachers.

1.4 DOCUMENT STRUCTURE OVERVIEW

In chapter 2, we provide a literature review that covers language models, tasks and

methods of using language models, methods of model compression, and shortcomings where

language models can be brittle or produce unwanted outputs. In chapter 3, we discuss

some of the work we have completed around leveraging unstructured sparsity, knowledge

distillation, and quantization to train, compress and transfer efficient inference models. In

chapter 5, we introduce and discuss our work improving the inference efficiency of multi-

lingual text classification using quantization, structured pruning, multi-task modeling, and

task-specific knowledge distillation. In chapter 4, we discuss our work on improving the

efficiency and robustness of bi-encoder-based retrieval using post-training alignment and

compression. Finally, in chapter 6, we discuss the role of scale in compression, provide

suggestions on model sizing and possible gains from compression approaches, and discuss

future work.

5

CHAPTER 2: LITERATURE REVIEW

2.1 OVERVIEW

In this chapter, we provide a broad overview of the relevant subject which we will discuss.

First, we discuss language models, their importance, and their limitations. Next, we discuss

the broad field of model compression and some popular approaches for model compression.

Third, we discuss the application of language models as applied to information retrieval.

2.2 LANGUAGE MODELS

2.2.1 What Is Language Modeling and Why Is It Useful

Language modeling is a method of assigning a probability distribution over some form of

language, like input. When applied to tokens in spoken or written human language modeling

models, the probability of a token wi given the previous i tokens as shown in equation 2.1:

P (w1, . . . , wm) =
m∏
i=1

P (wi | w1, . . . , wi−1) ≈
m∏
i=1

P (wi | wi−(n−1), . . . , wi−1) (2.1)

Language models (LM) can be useful methods to represent natural language because they

allow models to differentiate the meanings of sentences based on context. In other words, a

model can understand that the word ‘fly’ can mean different things in the sentences: ‘You

look fly,’ ‘Let’s fly away!’, ‘That is a fly.

While language modeling is not a new concept, it was not until the introduction of Neural

Network-based LM that these representations could serve as general understanding frame-

works. Before these Neural Network Language Models (NNLM), most language modeling

usually focused on modeling some form of an N-gram where the probability of a word only

depends on the previous N -word. Large Neural-Network-based LMs are the first step in a

Natural Language Processing (NLP) application as a way of turning some form of textual

input into a representation in a vector space.

Language models are created using many training objectives, but general models tend to

be either auto-encoding (AE), auto-regressive (AR), or some combination. AR models like

Elmo [45] or GPT-2 [10] learn an LM by predicting the next token in a sequence. AE models

like BERT [9] and ELECTRA [46] learn an LM by reconstructing some sequence portion.

6

2.2.2 Transformers

Language Models are commonly built using multiple transformer layers to capture long-

term input dependencies using self-attention [36]. Each transformer usually has some vari-

ation of two sub-components: multi head attention (MHA) and fully connected feed-forward

networks (FFN). MHA contains many self-attention heads, each of which has three sub-

components: queries (Q), keys (K), and values (V). The output of the attention component

is the concatenation of each attention head and is fed into the FFN. The attention of each

head in MHA is formulated as:

Attention(Q,K, V) = softmax

(
QK√

d

)
V, (2.2)

where d is the dimensionality of K and is used as a scaling parameter. The FFN is a fully-

connected feed-forward network with linear transformations and an activation function such

as ReLU or GeLU.

2.2.3 BERT

Building on the success of ELMo, leveraging the transformer architecture [36], and taking

the learning from other contextual word embeddings [47] [48] Devlin et al., 2018 introduced

BERT, which stands for Bidirectional Encoder Representations from Transformers. BERT

is an AE LM that uses modified stacked Transformer encoders (12 layers for a small model

and 24 for a large model) to build a contextual language representation. Instead of using

character-level convolutions or fixed word vectors as a starting point, BERT leverages a

piecewise tokenization [49], which sets a vocabulary size of 30,000.

Like other language models, BERT trains using unsupervised pre-training on a large text

corpus. Unlike previous models, BERT introduces two new training objectives to steer the

model: Masked Language Modeling (MLM) and next sentence prediction (NSP).

MLM reformulates language understanding as a cloze task [50], where the model’s goal is to

predict what a hidden word in a sentence may be. To train using MLM, BERT introduces

a new token [MASK] to represent the hidden word. 15% of each of the corpus tokens are

selected to be replaced, of which 80% (12% of the corpus) is replaced with [MASK], 10%(

1.5% of the corpus) is replaced with a random token, and the remaining 10% are left alone.

The model predicts the word when it finds a [MASK] token. NSP is a training method

inspired by question-answering (QA) systems, which tend to have two sentences to reason on

a query and a context passage. In NSP, the model is fed text, which combines two sentences,

A and B, with the unique separation token [SEP]. In 50% of the NSP samples, sentence B

7

directly follows A, while in the remaining 50%, A and B are selected randomly. The model

has a binary training goal if the sentences are next to each other in the original text.

2.2.4 Beyond BERT

Besides BERT and Elmo, there has been considerable research into additional language

models. RoBERTa [51] improves on BERT by training on a larger corpus for a longer time.

XLNET [52] combines AE and AR while avoiding some of the pitfalls of each method by

modifying AR to maximize the expected log-likelihood of a sequence concerning all permu-

tations of factorization order. XLNET also removes the notion of a [MASK] token to avoid

training the model with a token that never occurs in text and implements the whole archi-

tecture using the Transformer-XL [53]. ALBERT [54] explores the role of size in LM, finding

that parameter weights can be shared across layers meaning they can have 18 times fewer

parameters and train 1.7x faster than regular BERT all while producing similar language

representation to BERT. DistilBERT [55] creates a smaller LM using knowledge distillation

resulting in a similar performance to BERT with a 40% smaller model. GPT [48], GPT-2

[10], and GPT-3 [2] build an AR LM more suited toward language generation by using pro-

gressively larger models and a modified transformer decoder architecture. ELECTRA [46]

produces a model with comparable performance to BERT with substantially shorter training

by having the model predict all tokens in a sentence instead of the [MASK] token and by

corrupting the input using a Generator similar to that of a GAN. Beyond these few models,

we mention countless other optimizations and applications of this large-scale NNLM.

2.2.5 Relation To Thesis

Language models have become cornerstones of most approaches to understanding lan-

guage. Driven by this, in this thesis, we mainly study BERT, X-LMR, and T5 [11] as

they are broadly used. While more modern models have improved accuracy and efficiency,

these models are not used nearly as often. Our work focuses on improving performance for

production deployments’ workhorses.

2.3 MODEL COMPRESSION

Given the ability to classify, predict and generate insights, AI models have become a

large and common form of the computational workload. While these models can gener-

8

ate impressive results, using them at scale can be expensive and difficult. They commonly

require specialized inference infrastructures such as Graphics Processing Units (GPU)s or

Field Programmable Gate Arrays (FPGA)s [56]. The high cost of using models has driven

research to explore how to decrease the model size without losing accuracy.

While many successful compression approaches have been pioneered outside of natural lan-

guage processing (NLP)[57][58] [59], Transformer models can be fragile[60], as minor per-

turbations can lead to model collapse. Compression approaches usually start from a set

of trained parameters θ, e.g., a Transformer-based language model, and aim to produce

a different model θ∗ which approximates the accuracy of θ w.r.t. a given task-dependent

loss function L while minimizing its cost c, but at lower parameter count and increased

inference efficiency. In this formulation, model compression becomes an optimization of

((Lθ∗ − Lθ) + c(θ∗)) . Models are compressed by reducing the size or computational com-

plexity of execution so that their performance mirrors or approximates that of the original

model [61].

2.3.1 Iterative Compression

Compression schemes are often motivated by weight saliency metrics which minimize the

loss in accuracy due to the failure in the expressivity of the network. While there has been

some success in compressing models without retraining [62] [63] or using a single compression

step [64], it is more common to compress models in a gradual iterative fashion. In this

paradigm, a network is compressed in stages. Compression is applied at each compression

step, where some portion of the network is selected for reduction, and the network is further

trained to recover its complete accuracy.

2.3.2 Pruning

Pruning is a set of compression approaches that decrease the model size and improve

execution cost by removing network portions [58].

Unstructured pruning removes individual neurons by setting them to zero [57], which can

be exploited for storage and computational speedup. Unstructured Pruning seeks to find

a proxy of importance to identify what portions of the network can be removed with the

smallest impact on accuracy [58]. Zeroth order methods such as magnitude pruning [57],

[65] assume weights as a proxy for importance and the smallest weight. First-order methods

such as movement pruning [66] estimate importance by measuring the movement of weights

once they are transferred to a new task where weights that do not move are considered less

9

important.

Second-order [58], [67], [68] methods such as Optimal Brain Surgeon (OBS) leverage com-

plex Hessian approximations to determine the impact which Pruning may have. Other work

has focused on creating pruned networks by identifying sparse lottery tickets networks which

transfer well to downstream tasks and approximate the uncompressed model [23], [24].

In the realm of transformer-based LLMs, it has been shown that models can be compressed

during pre-training so that there is little to no loss in accuracy when fine-tuned [69]. While

unstructured Pruning can lead to massive compression in model parameters, improving in-

ference speeds requires specialized hardware or sparsity-aware inference engines in practice.

Structured pruning [58] removes entire structural portions of a network, which in the scope

of transformer-based language models layer in the encoder/decoder, decreasing the hidden

size of smaller structures like attention heads. Structured pruning approaches require a

structural understanding of the model to be successful. For transformer-based language

models, attention heads vary in importance, and nearly 40% of heads can be removed with-

out major impact on accuracy[70], [71]. Existing research has focused on evaluating how

many transformer layers can be removed [72] and the order in which they can be removed

[73]. Models like BORT [74] combine structured Pruning with an optimization approach to

produce smaller models designed around theoretically optimal sizes.

Semi-structured pruning is an intermediate approach where portions of the model are

removed with a small, consistent grouping, such as a rectangular weight grouping [75] by

setting their weights to zero. This approach is set to zero. This approach has recently

gained popularity thanks to efficient computational support in GPUs leading to wide-scale,

measurable inference improvements.

2.3.3 Knowledge Distillation

Knowledge Distillation (KD) [76] is an approach in which a compressed student model

is trained not to match the outputs of the dataset but the outputs of a larger and more

accurate teacher model by adding a loss component which minimizes the Kullback–Leibler

divergence between the two output distributions as shown in Equation 2.3. KD is a form

of label softening as a traditional target is a hard one-hot vector representing the correct

class. The learned outputs represent the candidate label distribution of a well-trained model.

uses a hardness parameter to control the mixture of regular loss and distillation loss and a

temperature parameter to control the softness of the probability distribution.

10

L = hLd + (1− h)Lℓ. (2.3)

Ld = DKL(θ∗ ∥ θt) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
. (2.4)

KD has been broadly applied to transformer-based language models leading to general-

purpose compressed models like DistillBERT [55], while TinyBERT [77], MobileBERT [78],

and MiniLM [79] have the student approximate the teacher’s intermediate representations,

obtaining better results at the cost of higher complexity.

2.3.4 Quantization

Quantization decreases the cost of inference and model size by lowering the precision of

weight and activation within a model [80]. Most networks have their weights represented

using int32. Quantization methods produce θ∗ by representing weights using less precise

data structures such as int16 and int8. While quantizing without retraining the model

is possible, minor rounding errors can lead to significant losses in accuracy. As a result,

performing Quantization-Aware Training (QAT) is a common approach to ensure minimal

loss in accuracy in compressed models. Specifically, QAT simulates the rounding effects on

floating point values and leverages a Straight-Through Estimator (STE) to approximate the

gradient, as quantization operations are not differentiable. While it is possible to produce

networks that use one, two, or three bits for weight representation, lack of operator support

can make it challenging to realize speedups, so most quantization focuses on int8 and int4.

Q8BERT [81] can apply QAT and improved training regimes to produce a simple and ex-

tensible quantized language model. At the same time, TernaryBERT [82] uses a complex

distillation-based approach to obtain highly low-bit representations. In contrast, Fan et al.

’20 [83] propose a scheme that randomly quantizes group weights during training, leading

to more accurate compressed models.

2.3.5 Relation To Thesis

This thesis primarily leverages unstructured pruning, structured pruning, quantization,

and knowledge distillation. We focus our work on these compression approaches as they are

widely deployed, and their usage provides the most direct path to realize inference speedups

using standard hardware. Using these approaches, we seek to improve model inference

speeds using commodity-grade central processing units (CPU) and graphics processing units

11

(GPU).

This thesis explores the novel application of these methods for information retrieval, text

classification, and text generation in ways not previously explored. Additionally, we explore

how these compression approaches work on novel model architectures and how they can be

used in conjunction with maximal compression. Our work introduces a wide range of exper-

imental findings about optimal methods for improving robustness and inference efficiency

for existing and novel workloads.

2.4 NEURAL METHODS FOR INFORMATION RETRIEVAL

The field of Information Retrieval has long studied how best to retrieve the most relevant

information given constraints in corpora, inference needs, and many task-specific conditions.

While term-based methods have long driven retrieval, the growth of datasets and language

models has seen surging popularity both in research and real-world deployments.

2.4.1 Bi-Encoders

Bi-Encoders, commonly called dual-encoders or dense retrievers, decompose ranking by

leveraging the inner product of query and document representations to produce a relevance

score for query document pairs. As their name suggests, bi-encoders leverage two encoders

that run independently, one for the query and one for the passage. They are commonly

called dense retrievers because of the density of their representation vectors compared to

the sparsity of term-based retrieval methods. Dense retrievers can leverage contextual word

representations without massive computational overhead by producing query and document

representations. Since their document representations are query invariant, they can be pre-

computed and loaded into an Approximate Nearest Neighbor (ANN) such as FAISS [84].

The k closest documents can be found for each query with minimal latency at run time.

Bi-encoders leverage LLM such as BERT [9] for their text representation. As a result, they

are often limited to ranking short passages of text and are commonly referred to as Dense

Passage Retrievers (DPR) [28] [85]. Driven by their efficiency in deployment and relevance

performance, DPR-based models have rapidly become the building blocks for systems doing

product search [29], open domain question answering [28] and customer support [86].

Recent work has heavily focused on improving the relevance of DPR models by improving

the negative sampling using methods like ANCE [32] and in-batch negatives [87]. While ef-

fective DPR models are brittle to shifts in the domain, minor variations can cause a complete

collapse in relevance. Li et al. ’2022 introduced methods for improving such performance

12

by having a single query encoder leverage multiple document encoders to transfer between

domains [88]. While effective, such a method carries a high computational load as multiple

indexes must be maintained and updated.

2.4.2 Cross-Encoders

Cross-Encoders are an application of language models which generate a rank or re-rank

documents by producing a relevance score by scoring each possible query document pair.

This method formulates the task as a binary classification where the query and candidate

document into one text input, and a language model will predict whether this pair is relevant.

A Cross-Encoder does not produce a sentence embedding and, as a result, can be much

more computationally expensive when compared to a bi-encoder. While less efficient, Cross-

Encoder performs better than Bi-Encoders and is more robust to noise or domain shift.

[89].

2.4.3 Training Methods

Data Augmentation (DA) is a popular approach for improving how well models perform

on new or noisy data. In data augmentation, training is extended by augmenting the training

data with modifications or perturbations which match the desired model behavior. DA is

extremely common in computer vision where training data is commonly rotated, blurred,

cropped, or zoomed-in/out [90] [91]. DA has become increasingly more popular in NLP and

has been used to improve model performance [77], simulate large-scale training data when

it is not available [92], and mitigate bias [93] in existing datasets. A detailed survey on DA

approaches for NLP has been complied by Feng et al. 21’ [94].

Contrastive Learning (CL) builds on the notion of a contrastive loss [95], which seeks to

create clusters in the embedding space such that examples with a shared class are far from

other classes but close to each other. Much like learning that queries with noise have a

shared intent, Schroff et al. 15’ leverage contrastive learning to recognize faces despite

different angles and perspectives [96] using a triplet loss. This approach is a natural fit for

the world of search as relevance is at its core clustering relevant items close together and

far from irrelevant items. Recently, contrastive learning has become a method for learning

relevance at the corpora scale [32] and improving DPR on noisy queries, [33] [97].

13

2.4.4 Compressing Bi-encoders

The widespread utility of bi-encoders has demonstrated the need for compression. Seek-

ing to improve the size of vector-based indexes has led to binary compression of dense rep-

resentations [98] and broad experimentation about reducing the end-to-end size of retrieval

systems [99]. While effective in the domain, these approaches have drawbacks as learned

compression approaches can be brittle to domain shifts [100]. Choi et al. ’21 [101] show that

using knowledge distillation with multiple teachers can maximize the performance of dense

retrievers.

2.4.5 Relation To Thesis

This thesis focuses on the bi-encoder models, which use language models to generate

their vector representations. Our focus on these models is driven by the growing interest in

using vector-based retrieval models to provide context for other language models. Methods

that leverage bi-encoders have quickly gone from specialized deployments to being the com-

mon building block for many research projects. Despite their broad adoption as a retrieval

layer for research studies improving efficiency and robustness is more nascent. In subse-

quent chapters, we focus on finding and mitigating weaknesses in noisy inputs and inference

efficiency.

2.5 SEQUENCE TO SEQUENCE MODELING

2.5.1 Scaling Laws

Scaling Laws has become an increasingly important area of study as models’ size and

training data grows. Performance of the transformer-based language model improves with

the relation to model size [48] and that larger models outperform smaller models [2] on most

NLP tasks. Increasing the training corpus size can lead to large improvements in perfor-

mance, and model sizes can have a optimal training data size [102]. Li et al. (2020) [103]

explore the relationship between model size and training efficiency finding larger models

train faster and are more robust to pruning and quantization [104].

Rosenfeld et al. 2020 demonstrate that unstructured pruning impacts follow scaling laws

[105] where larger models can be pruned with greater ease. Despite this broad study of

scaling laws, to our knowledge, we have not found any research focusing on the scaling laws

of sequence-to-sequence models for summarization tasks.

14

2.5.2 Asymmetrical Sequence To Sequence Modeling

broadly refers to non-uniformity between encoder and decoder model shape or attributes.

Training and inference procedures should match as closely as possible [106] [107] as improve-

ments in training loss during optimization result in improvements in model performance

during Inference. While this may lead to the best model performance, it ignores the variable

inference cost of models sequence to sequence models.

During Inference, latency is dominated by the asymmetric execution of the language model.

The auto-encoding encoder executes once over the entire input sequence, while the auto-

regressive decoder executes iteratively until an end-of-sequence token is produced.

Kasai et al. demonstrated how the sequence-to-sequence language model performance for

machine translation is dominated by the encoder depth [108]. Tay et al. 2021 extend this

work by finding a DeepNarrow which shows that for broad language modeling, it is possible

to have 50% fewer parameters and a 40% faster inference with no loss in accuracy [109].

2.5.3 Compressing Sequence To Sequence

Compressing Sequence-to-sequence is a growing area of study where approaches from reg-

ular, efficient inference has shown some transfer ability. Shleifer et al. show that it is possible

to gain 1.93x speedup on a BART summarization model by applying structural pruning [110]

but find compression approaches differ in their success depending on the dataset. Leveraging

semi-structured pruning, Lagunas et al. can gain a 1.19 speedup [111] for minor losses in

accuracy. While they find that the encoder is easier to prune than the decoder, they do not

use this evidence of asymmetry to speed up performance further.

Li et al. investigate how to enable quantization, finding that without specialized distillation

during quantization, performance collapses [112]. Leveraging that generation occurs itera-

tively, and some tokens are easier to generate than other CALM [113] apply early exiting to

improve inference speed by 1.4x. While existing work has found interest in asymmetry, it

has not been studied directly, nor has relationships in model scale been explored.

While there are other approaches such as knowledge distillation [76] [114] [77], quantization

[81], early exiting [115] and token pruning [116] we focus our work on the impact structural

pruning and its relation to symmetry in size of sequence to sequence models. We focus on

this form of compression as we found applications of asymmetric pruning [110] [112] without

15

any direct study of the impact of variations in symmetry.

2.5.4 Relation To Thesis

This thesis focuses on how sequence-to-sequence modeling can be scaled to web-scale

workloads by improving their inference efficiency. Sequence-to-sequence models have be-

come a common building block for NLP workloads. They can map inputs and outputs with

varying lengths and modalities, providing a powerful architecture for conditional genera-

tion. In studying this application, we leverage model scaling laws, asymmetrical modeling

approaches, and existing compression approaches.

16

CHAPTER 3: INTRODUCING AND TRANSFERRING SPARSITY FOR
EFFICIENT AUTO-ENCODER INFERENCE

3.1 OVERVIEW

For the last decade, the common paradigm in using deep learning has been to improve

model performance by improving architecture and scale. These models feature larger and

larger, highly interconnected layers, otherwise referred to as dense. While this approach

has continuously led to improvements in model performance, it is not without drawbacks.

In 2011 a state-of-the-art computer vision model could run using a laptop. Now running a

state-of-the-art language mode requires a cluster of specialized GPUs, which can cost up-

wards of 100,000 dollars an hour and draw kilo-watts of power.

Inspired by the sparsity of the connections of neurons in the brain, unstructured sparsity

seeks to improve the model efficiency by turning densely connected models into sparse mod-

els, which as a result, are far more efficient. While a large portion of existing research has

focused on theory and high-level implementations, our work is focused on using the same

sparsity to realize true measurable inference speedups.

This chapter will discuss our broad experimentation focused on leveraging unstructured

sparsity to improve efficiency for language model inference. First, our work examines The

Optimal BERT Surgeon where optimal zeroth and second-order pruning approaches are

combined with quantization and structural pruning for a systematic approach for improv-

ing inference efficiency without using GPUs. Next, our work discusses Sparse*BERT and

broad experimentation on how sparse language models can be transferred to novel domains

and tasks without further optimization. Finally, our work discusses oBERTa, which extends

earlier experiments in sparse language modeling while improving training methods, model

initialization, and distillation to deliver compelling inferences for overall text classification

workloads.

3.2 THE OPTIMAL BERT SURGEON: SCALABLE AND ACCURATE
SECOND-ORDER PRUNING FOR LARGE LANGUAGE MODELS

3.2.1 Overview

In this section, we consider the problem of sparsifying BERT models, a crucial building

block for natural language processing, to reduce their storage and computational cost. We

introduce the Optimal BERT Surgeon (oBERT), an efficient and accurate pruning method

17

based on approximate second-order information, which we show to yield state-of-the-art re-

sults for compression in both stages of language tasks: pre-training and fine-tuning. Specifi-

cally, oBERT extends existing work on second-order pruning by allowing for pruning blocks

of weights and is the first such method applicable to the BERT scale. Second, we investigate

compounding compression approaches to obtain highly compressed but accurate models for

deployment on edge devices. These models significantly push the boundaries of the current

state-of-the-art sparse BERT models concerning all metrics: model size, inference speed,

and task accuracy. For example, relative to the dense BERT, we obtain 10x model size

compression with ¡ 1% accuracy drop, 10x CPU-inference speedup with ¡ 2% accuracy drop,

and 29x CPU-inference speedup with ¡ 7.5% accuracy decline.

3.2.2 Introduction

Pre-trained Transformer models [36] [9] robust language representations which can be spe-

cialized on various tasks. Given their massive growth [10] [117], techniques for reducing their

computational overheads have become popular. One classic technique is Knowledge Distilla-

tion (KD) [76], which transfers knowledge from a larger teacher to a smaller student model.

Other work has leveraged lower-precision representations to produce quantized models. Our

primary focus is an orthogonal approach to applying unstructured and block pruning, i.e.,

removing individual weights, to produce compressed but accurate language models. Fig-

ure 3.1 provides a comparative overview of state-of-the-art results for unstructured pruning.

This section introduces a method for improved unstructured and semi-structured (block)

pruning by leveraging the second-order approach pioneered by the Optimal Brain Surgeon

framework [58], [67], which we scale for the first time to LLMs. Further, we put our results

in the context of a compound compression approach, which combines several compression

techniques to obtain sparse models which we execute on a sparsity-aware CPU-based run-

time [119], showing order-of-magnitude speedups at low accuracy loss. In summary, our

contributions are as follows:

• We thoroughly explore weight pruning approaches applied to LLMs, including lottery

tickets, movement pruning, magnitude, and second-order pruning.

• We introduce a general second-order pruning method called Optimal BERT Surgeon

(oBERT), which supports unstructured and block pruning and is the first second-order

method to be both highly accurate and scalable to the dimensionality of BERT models.

• We illustrate the benefits of oBERT by significantly improving upon existing state-of-

the-art pruning methods in both stages of language tasks: pre-training and fine-tuning.

18

60 70 80 90 97
Sparsity (%)

70.0
72.5
75.0
77.5
80.0
82.5
85.0
87.5
90.0

F1
 sc

or
e

BERTBASE
Lottery Ticket
Sparse BERT
Movement Pruning
oBERT (ours)

Figure 3.1: Performance overview relative to state-of-the-art unstructured downstream
pruning methods [24], [118], [66], in this order, of the BERT-base model on the
SQuADv1.1 task.

For illustration, when pruning BERT, oBERT outperforms Movement Pruning (MvP),

the most accurate prior approach, by more than 2% absolute F1 score at the same

sparsity and can match the accuracy of MvP models with 3x fewer parameters.

• We investigate the applicability of this pruning method in a framework which com-

pounds popular compression approaches for LLMs, i.e., applying pruning in combina-

tion with layer dropping and quantization. In this context, we show that our resulting

sparse models provide order-of-magnitude improvements compared to other compound

compressed models and can be easily deployed for CPU inference.

3.2.3 Background and Related Work

Transformer LLMs are usually built using multiple transformer layers with self-attention [36].

Each transformer has a variation of two sub-components: multi-head attention (MHA) and

a fully connected feed-forward network (FFN). Given the massive size of well-performing

models, there has been growing interest in LLM compression. They are fragile as minor

perturbations can lead to model collapse [60]. Pruning schemes are motivated by weight

saliency metrics representing the loss in accuracy due to pruning. It is common to prune

19

in iterative steps, each removing weights until a desired sparsity level is reached. Now, we

briefly overview existing approaches.

Structured pruning for LLMs focuses on reducing the number of layers and attention

heads and requires a structural understanding of the model. [70] and [71] demonstrated that

for some tasks, nearly 40% of attention heads could be removed without a major impact on

accuracy. Other work has focused on removing layers [72] and the order in which they are

removed [73]. In some of our experiments, we apply standard “direct” layer dropping with

pruning.

Semi-structured pruning is an intermediate approach by which smaller groups, e.g., rect-

angular sets of weights [75], are set to zero. This approach has recently gained popularity

thanks to efficient computational support. We extend the second-order pruning formulation

to such groupings and show results for a specific grouping supported by a CPU-inference

engine.

Unstructured pruning removes individual weights by setting them to zero. Gradual Mag-

nitude Pruning (GMP) is a classic approach, which makes use of weight magnitudes as a

saliency metric for pruning [57], [65].

First-order pruning methods use a gradient-based formulation of the saliency metric.

A popular method is Movement Pruning (MvP) [66], specifically designed for pruning

in the fine-tuning stage. Intuitively, it removes weights that are moving toward zero. The

resulting models were the first to achieve high sparsity with tolerable accuracy loss. Before

our work, this approach set state-of-the-art results for unstructured pruning.

Second-order pruning methods [58], [67], [68], [120] were developed in the context of

image classification, and leverage complex approximations of the loss curvature. However,

second-order pruning methods require an approximation of the inverse Hessian, which is ex-

pensive to store and compute for LLM parameter counts. Our proposed approach is similar

to WoodFisher/M-FAC methods [68], [120], but is the first to work accurately at the LLM

scale. Specifically, the Woodfisher approach is infeasible at the BERT scale, as it requires

storing gradients for inverse Fisher calculation in memory at the point of pruning. The

M-FAC approach scales, but we show that its parametrization yields worse pruning results.

This is because M-FAC performs full-matrix (non-blocked) inversion by default, which is

inherently noisy. In addition, we extend the theoretical OBS approach to semi-structured

(block) compression. We also show that our method can be applied during LLM pre-training

and fine-tuning, yielding state-of-the-art results in both regimes.

Knowledge Distillation [76] trains a smaller student model against outputs of a larger

teacher model by adding a loss component that minimizes the KL-divergence between the

two output distributions, which is the approach we adopt in our setup too. A hardness

20

parameter is used to control the mixture of regular and distillation loss, and a temperature

parameter is used to control the softness of the distribution. Contrary to this, approaches like

DistilBERT [55], TinyBERT [77], MobileBERT [78], and MiniLM [79] utilize more complex

distillation schemes, based on transferring knowledge from intermediate model’s represen-

tations. Our sparse models provide order-of-magnitude improvements upon some of these

methods.

Quantization represents weights and activations in lower precision [80], and was used

to obtain models such as Q8BERT [81] and TernaryBERT [82].

[121] uses information about the Hessian spectrum to choose quantization bit-widths,

whereas [122] approximates the Hessian trace for structured pruning. These Hessian-based

approaches differ from the one we propose, as we use entirely different inverse-Hessian ap-

proximations to guide pruning decisions. Our work focuses on weight pruning and compu-

tational speedups achievable on commodity CPUs. As such, the methods we investigate are

orthogonal to quantization. Moreover, it is impossible to directly compare to low-bandwidth

quantized models as most inference frameworks do not support such custom formats. There-

fore, we will only use the standard Quantization-Aware Training (QAT) to 8-bit weights,

which is well-supported on Intel CPUs, and showcase the resulting speedups in conjunction

with layer dropping and weight pruning.

Downstream compression methods attempt to compress directly while fine-tuning a

specific task. The MvP method is specially designed for this setup. Upstream compres-

sion methods compress during the pre-training phase, reducing the need for task-specific

pruning. [24] examined the “Lottery Ticket” strategies [23], which, as we illustrate later,

incur huge accuracy loss even at moderate sparsities. Recent work “Prune Once for All”

(Prune OFA) by [69] showed that well-tuned magnitude pruning could be competitive with

downstream methods like MvP.

We first examine the performance of prior pruning methods, notably MvP, Prune OFA,

and Lottery Tickets, relative to the new second-order oBERT method. The approach we

propose consistently improves upon all these prior methods, both in the pre-training (up-

stream) and fine-tuning (downstream) stages, and can be compounded with other compres-

sion techniques to obtain models that are smaller, faster, and more accurate than models

like DistilBERT, TinyBERT, and block MvP.

21

3.2.4 The Optimal BERT Surgeon (oBERT)

3.2.5 Generalized Second-Order Block Pruning

The pruning problem starts from a well-optimized dense model w∗ ∈ Rd, and aims to

find a sparse version of w∗, where many of the weights are set to zero, and the remaining

weights may be updated accordingly to preserve the loss. It is common for this process to

occur gradually, i.e., by progressively removing the weights. A classic approach [58], [67]

for “optimal” pruning of weights from w∗ at a step is to expand the loss function L locally

around w∗ for a sparse 0/1 weight mask M. If we denote by wM = (M ⊙ w∗), the model

resulting from the Hadamard (element-wise) product between M ∈ {0, 1}d and w∗, we can

use the Taylor expansion at wM to obtain:

L(wM) ≃ L(w∗) + (wM −w∗)⊤∇L(w∗) +
1

2
(wM −w∗)⊤HL(w∗)(wM −w∗). (3.1)

Given that w∗ is well-optimized, it is reasonable in practice to assume that ∇L(w∗) ≈
0 [68]. Then, the change in loss incurred by pruning a subset of weights can be expressed as

δL(δw) ≃ 1

2
δw⊤HL(w∗)δw (3.2)

where δL(δw)L(wM) − L(w∗) and δwwM − w∗. A popular way of approximating the

Hessian at w∗ is via a dampened empirical Fisher information matrix [67]:

HL(w)≃F̂(w)=λId +
1

m

m∑
i=1

∇Li(w)∇L⊤
i (w) (3.3)

where λ ≥ 0 is a small dampening constant, Id ∈ Rd×d identity matrix and m is the number

of gradient outer products used to approximate the Hessian. Given the positive-definiteness

of (3.3), the quadratic form (3.2) is always nonnegative, which is why we will refer to δL(δw)

as a loss increase incurred by pruning.

Returning to our pruning problem, we assume we wish to identify a block of weights Q

of a given shape whose removal by zero-masking would incur a minimum increase in loss.

This leads to the following constrained optimization problem:

min
δw

1

2
δw⊤F̂(w∗)δw

s.t. e⊤k δw + wk = 0, ∀k ∈ Q
(3.4)

where ek ∈ Rd stands for the k-th canonical basis vector. This derivation is known [67];

22

however, the optimal pruning update has only been derived for pruning individual weights.

Here, we will provide a generalized solution, which applies to general Q. First, for con-

venience, we express the system of |Q| equality constraints in matrix-equation form as

EQδw+EQw
∗ = 0, where EQ ∈ R|Q|×d is a matrix composed of the corresponding canonical

basis vectors ek (∀k ∈ Q) arranged in rows. This optimization problem can be solved with

the method of Lagrange multipliers. Specifically, we wish to find stationary points of the

Lagrangian L(δw,λ), where λ ∈ R|Q| denotes a vector of Lagrange multipliers. Solving

the system of equations ∂L(δw,λ)
∂δw

= 0 and ∂L(δw,λ)
∂λ

= 0 yields the following optimal weight

update:

δw∗ = −F̂−1(w∗)E⊤
Q

(
EQF̂

−1(w∗)E⊤
Q

)−1

EQw
∗ (3.5)

which prunes a set of weights Q and updates the remaining weights to preserve the loss.

Now, the corresponding loss increase incurred by the optimal weight update δw∗ can be

expressed as the saliency score of weights Q, which we denote by:

ρQ =
1

2
(EQw

∗)⊤
(
EQF̂

−1(w∗)E⊤
Q

)−1

EQw
∗. (3.6)

We use this saliency/importance score to rank groups of weights for pruning. As a sanity

check, if we prune a single weight wj at a time, our derivations will yield the standard

formulas of [67], [68].

3.2.6 An Efficient Implementation

Implementing the previously described approach for LLMs, where the number of weights

w ∈ Rd is huge, is infeasible. In particular, this is due to the dependence on the inverse of

the empirical Fisher information matrix F̂−1(w) ∈ Rd×d, appearing in formulations of the

saliency score and of the optimal weight update. We now describe how to circumvent these

issues.

Pruning the optimal set of weights Assume a gradual pruning setup, in which at each

pruning step, we wish to prune a model to a target sparsity s ∈ (0, 1], effectively zeroing

out s× d weights, in groups of size |Q|. Typically s× d≫ |Q|, meaning we want to remove

multiple groups simultaneously. Finding the optimal set of s×d
|Q| groups is an intractable

combinatorial problem due to all possible correlations between them, given by the binomial

coefficient
(
n
k

)
, where n = d

|Q| and k = s×d
|Q| . This problem can be alleviated by ignoring

correlations between different groups of weights Q, and solving only for correlations between

the weights within the same group. In practice, this boils down to evaluating the saliency

score ρQ for each group Q, and pruning the s×d
|Q| groups with the lowest score. As pruning

23

many weights in the same step can make the Taylor approximation of the loss function less

accurate, one can consider pruning with multiple smaller sub-steps with re-computations of

the Hessian approximation in between (without intermediate fine-tuning). While this can

further improve the quality of the pruning step [120], we do not implement this additional

optimization since the competing methods do not utilize re-computations.

Inverse empirical Fisher computation The above procedure’s key space and time com-

plexity cost is computing products with the inverse empirical Fisher. A direct approach

would be to perform a block-wise diagonal approximation of this matrix (which we detail

next), and perform direct block inversion. However, we found experimentally that this ap-

proach is too expensive in terms of time and quite numerically sensitive. As an alternative,

we rely on the fact that the matrix we wish to invert is a sum of rank-1 matrices and em-

ploy the Woodbury/Sherman-Morrison (WSM) inversion formula. Specifically, given a sum

(A + uv⊤) of an invertible matrix A and an outer product of vectors u and v with com-

patible dimensions, the inverse (A+uv⊤)−1 can be exactly calculated as A−1− A−1uv⊤A−1

1+v⊤A−1u
.

Placing the expression of the empirical Fisher in the WSM formula, we obtain the following

recursive formulation, where m is the number of gradients employed in the approximation:

F̂−1(w) = F̂−1
m (w) =

(
F̂m−1(w) +

1

m
∇Lm(w)∇L⊤

m(w)

)−1

(3.7)

Unrolling the recursion with F̂−1
0 (w) = 1

λ
Id, we can obtain an iterative formula to calculate

the inverse of the empirical Fisher matrix as exactly

F̂−1(w) = F̂−1
m (w) =

1

λ
Id −

m∑
i=1

(
F̂−1

i−1(w)∇Li(w)
)(

F̂−1
i−1(w)∇Li(w)

)⊤
m +∇L⊤

i (w)F̂−1
i−1(w)∇Li(w)

. (3.8)

The iterative formulation enjoys several computational advantages over the direct implemen-

tation. The most notable ones are 1) avoiding explicit calls to the expensive and dampening-

sensitive matrix inversions and 2) allowing successive updates of the inverse as new gradients

are computed, never needing to store all m gradients of size d and thus significantly reducing

memory requirements.

3.2.7 Memory and Run-Time Complexity

Computing and storing the inverse empirical Fisher F̂−1(w) ∈ Rd×d is prohibitively

expensive for modern LLMs, which have hundreds of millions of parameters, due to the

quadratic complexity on the number of weights d. However, [68] have shown that a diagonal

24

block-wise approximation of the empirical Fisher matrix can be very accurate for pruning

convolutional neural networks. We adapt the same approach here, in the context of LLMs.

Thus, for blocks of width B along the main diagonal, memory requirements for the compu-

tation of the inverse Fisher matrix are reduced from the quadratic O(d2) to a linear O(Bd)

dependence on the number of weights d. At the same time, run-time complexity relaxes from

O(md2) to O(mBd). As we will show, this computation can be efficiently and accurately

performed for moderate values of m and B.

3.2.8 Efficient and Scalable Implementation

On the practical side, we have identified general hyper-parameters B = 50 for the

block size and m = 1024 for the number of gradients that produce state-of-the-art re-

sults for all analyzed BERT models while still being able to fit on the 24GB RTX 3090

GPU. Moreover, for these parameter values, the block-wise approximation of F̂−1(w) can

be implemented very efficiently on modern accelerators. Specifically, we take advantage

of the fact that such hardware favors batched matrix operations and that the blocks of

size B × B in F̂−1(w) are independent. With NB = d
B

, we refer to the total number

of blocks, i.e. the batch-dimension. The procedure works as follows. First, we com-

pute batched matrix-vector products F̂−1
i−1(w)∇Li(w) ∈ RNB×B and scalar denominators

m + ∇L⊤
i (w)F̂−1

i−1(w)∇Li(w) ∈ RNB . Then, we update the inverse Fisher for each block

by computing the scalar-scaled outer products.
(
F̂−1

i−1(w)∇Li(w)
)(

F̂−1
i−1(w)∇Li(w)

)⊤
of

shape RNB×B×B.

3.2.9 Experimental Validation

To ease reproducibility, we conduct our experiments in modified versions of the popular

open-source libraries: Transformers [123] and SparseML [124]. All of our experiments use

publicly available datasets via [125] and focus on the BERTBASE model [9], one of the most

commonly used LLMs, composed of 12 transformer layers with 110M parameters. Following

community standards, we prune the encoder’s weights (85M) and report sparsities relative

to this number. Our models, compression recipes, and full implementation will be made

public.

3.2.10 Downstream Unstructured Pruning

We first revisit the accuracy-compression trade-off for pruning on downstream tasks.

25

Goals and setup. We compare existing approaches, notably Movement Pruning (MvP) [66]

and Lottery Ticket (LT-BERT) [24], against the gradual unstructured oBERT method, in-

troduced in Section 3.2.4. Our experiments evaluate performance on a variety of downstream

(English) tasks commonly used to evaluate model compression: question answering SQuAD

v1.1 [7], sentence classification Quora Duplicate Query Dataset QQP [126], and natural

language inference MNLI [127].

Comparison with MvP. For a fair comparison with MvP, we consider the 10-epoch

gradual pruning setup used to obtain the best results by [66]. Specifically, we start from the

BERTBASE model and perform 2 epochs of fine-tuning, 6 epochs of pruning, and 2 further

epochs of fine-tuning of the compressed model. We impose a global sparsity distribution

over all layers, prune with oBERT two times per epoch, and use KD from the fine-tuned

BERTBASE teacher. For oBERT pruning, we use m = 1024 gradients, block size B = 50,

and dampening λ = 10−7 to approximate the inverse Hessian matrix. In all our runs, the

first pruning step prunes 70% of weights and then follows the cubic interpolation [128] to

the target sparsity. This sizeable first pruning step gives more time to recover from the later

pruning steps, which impose higher sparsities.

We observe that Optimal BERT Surgeon outperforms Movement Pruning by a signifi-

cant margin, more than 2 points of F1 score at the same sparsity. Remarkably, the model

pruned with oBERT to 97% sparsity has similar accuracy to the MvP-pruned model at 90%

sparsity, which has roughly 3x more weights. This reinforces the effectiveness of second-order

information for pruning.

Extended pruning and fine-tuning. Next, we examine the effects of extending the

gradual schedule to 30 epochs, matching the setup used for LT-BERT [24]. The only dif-

ference compared to our 10-epoch structure is that we now prune with oBERT every four

epochs and rewind the learning rate after each pruning step. The extended setup leaves

more time to recover from pruning. We report the mean over three runs. For additional

evaluation metrics and standard deviations, please see Tables A.4 and A.7 in the Appendix.

The results show a clear accuracy difference between oBERT and LT-BERT, especially at

high sparsities. This difference is justified since the LT-based approach attempts to mainly

transfer network connectivity, whereas the oBERT can also benefit from the weight values.

Finally, we examined the impact of extended setup with Soft MvP on SQuAD, targeting

90% sparsity (not shown in the Table), leading to an (F1, EM) combination of (87.42, 79.83)

for MvP. The F1 gap in favor of oBERT is lower than at 10 epochs, suggesting that extended

fine-tuning helps all methods, yet, it is far from negligible.

26

Task
BERT
BASE

Spars.
Soft
MvP

oBERT
(ours)

LT-
BERT

oBERT
(ours)

Epochs 10 Epochs 30 Epochs

SQuAD
F1

88.54
80%
90%
97%

-
84.90
82.30

-
87.98
84.65

86.54
68.00∗

-

89.04
88.31
85.98

MNLI
m-acc

84.54
80%
90%
97%

-
81.20
79.50

-
83.20
81.00

82.60
75.00∗

-

84.32
83.79
81.77

QQP
acc

91.06
80%
90%
97%

-
90.20
89.10

-
90.89
90.23

90.30
90.00

-

91.57
91.35
90.87

Table 3.1: Sparse-transfer dev-set performance of upstream-pruned BERTBASE models. (∗

approximate results as the exact numbers are not available.)

3.2.11 Upstream Unstructured Pruning

An appealing alternative to downstream pruning is to compress models upstream on the

semi-supervised pre-training task [69]. Given the upstream pruned model, computational

requirements for obtaining downstream fine-tuned models are significantly reduced, as only

fine-tuning of the remaining weights is necessary.

Goals and setup. To compare with existing approaches, notably Prune OFA [69] and

LT-BERT [24], we gradually prune with oBERT directly at upstream datasets, BookCorpus

and English Wikipedia, and then fine-tune the remaining unpruned weights on the same

three downstream tasks introduced in A.2.7.

Teacher preparation. Following [51], we start with the HuggingFace BERTBASE uncased

model and fine-tune it for additional 10 epochs only on the masked language modeling task.

Pruning at upstream. Once the distillation teacher is trained, we gradually prune and

fine-tune the BERTBASE model for 3 epochs, using KD from the dense teacher. We prune

four times per epoch and rewind the learning rate to the initial value after each pruning

step. Hyper-parameters for oBERT are the same as for downstream pruning in A.2.7.

Sparse-transfer to downstream. To evaluate the resulting upstream-pruned mod-

els, we finetune the unpruned weights on downstream tasks with KD from the fine-tuned

BERTBASE model. For a fair comparison with Prune OFA, we fine-tune for eight epochs.

The results in Table 3.2 show that sparse models produced by oBERT outperform state-

of-the-art methods by significant margins. We report the mean over four runs. In contrast

to Prune OFA, which performed extensive hyper-parameter tuning for sparse transfer, our

27

Task
BERT
BASE

Sparsity
LT-

BERT
Prune
OFA

oBERT
(ours)

SQuAD
F1

88.54
90%
97%

68.00∗

-
87.25

-
88.49
84.92

MNLI
m-acc

84.54
90%
97%

75.00∗

-
81.45

-
83.40
80.91

QQP
acc

91.06
90%
97%

90.00
-

90.93
-

90.99
90.33

Table 3.2: Sparse-transfer dev-set performance of upstream-pruned BERTBASE models. (∗

approximate results as the exact numbers are not available.)

recipe is simple and general across downstream tasks: 8 epochs of fine-tuning with a linearly

decaying learning rate. This suggests that sparse pre-trained models found by oBERT con-

stitute a strong starting point for sparse transfer learning, which can be further improved

by task-specific hyperparameter tuning.

3.2.12 Compound Compression For CPUs

To probe the potential practical impact of our approach, we specialize the technique

for deployment on CPUs, corresponding to “edge” deployments. Specifically, we tailor our

sparse models to the DeepSparse [119] sparsity-aware runtime by compounding unstructured

pruning with additional compression techniques.

Direct layer dropping. The competitive results obtained at high sparsities in sections

A.2.7 and 3.2.11 suggest that BERTBASE may be overparameterized for downstream tasks.

To improve the compression ratio and inference speed, we apply “direct” layer dropping:

initially drop all but 3 or 6 of the BERT’s 12 layers. We drop layers from our upstream

teacher, following [129], and fine-tune them with KD in the same setup used to prepare the

upstream teacher. These three and 6-layer models are used as starting points for downstream

pruning. More sophisticated layer-dropping techniques [130] could bring further accuracy

gains; we leave this for future work.

Block pruning and QAT. High-performance inference usually benefits more from

(semi) structured sparsity patterns than unstructured ones. Hence, we employ the gen-

eralized oBERT formulation introduced in the section 3.2.4 and prune weights in the 4-block

pattern, meaning that contiguous blocks of 4 weights are either set to zero or kept dense.

Both pruning types, unstructured and 4-block, can be leveraged for computational speedups

with the DeepSparse runtime, but 4-block pruning coupled with INT8 quantization can pro-

28

Layers Sparsity Unstructured 4-block +QAT

12
0%
80%
90%

89.48
89.04
88.31

89.48
88.57
87.57

89.06
87.89
86.68

6
0%
80%
90%

88.32
88.20
86.78

88.32
87.00
85.34

87.94
86.10
84.59

3
0%
80%
90%

84.66
84.08
82.50

84.66
82.79
80.69

84.25
82.04
79.66

Table 3.3: F1 score of the 3, 6, and 12-layer models compound-compressed on the
SQuADv1.1.

vide further performance gains. For quantization, we apply standard quantization-aware

training (QAT) [131] on top of the 4-block models.

Compounding for deployment. To determine the impact of different compression

schemes, we investigate unstructured and 4-block pruning of the 3, 6, and 12-layer models.

We use the same hyper-parameter set for all runs from the extended pruning and fine-

tuning setup in Section A.2.7. The results are given in Table 3.3, where we also report the

accuracy of the corresponding dense models (0% sparsity) in the same setup. The results

indicate that compression methods can be combined without model collapse, although the

accuracy drops do compound. The fact that highly compressible layer-dropped models

suggest that structured and fine-grained (unstructured) compression are complementary.

We find it remarkable that our 6-layer unstructured oBERT-pruned model is competitive

with the 12-layer MvP-pruned model when both are pruned to 90% sparsity.

Practical trade-offs. We now benchmark these models in an end-to-end fashion, both

in terms of model size and inference speed. For model size, we report the checkpoint size in

MB after standard gzip compression. We say the number of items per second (throughput)

for inference speed on the well-established SQuAD v1.1 CPU-inference benchmark with a

sequence length of 128 and a batch size of 32. Figure 3.2 depicts relative accuracy versus

magnitude of improvement in speed and model size. As a baseline for full recovery, we follow

the community standard, e.g. [66], and adopt the dense BERTBASE model with an 88.54 F1

score. The baseline for inference speed is dense BERTBASE inference with DeepSparse, which

matches the industry-standard ONNX Runtime inference engine. Results suggest a roughly-

linear trade-off between compression and accuracy loss, with a compression jump of around

1% accuracy drop due to the application of quantization. Specifically, we observe 8.4x higher

29

92949698100
F1 recall (%)

0

5

10

15

20

25

30

M
ag

ni
tu

de
 o

f i
m

pr
ov

em
en

t Inference speed
Model compression

Figure 3.2: F1 recall on the SQuADv1.1 task relative to improvements in CPU-inference
speed and model size.

inference speedup at less than 1% accuracy drop, 10x speedup at less than 2% drop, 15x

speedup at less than3% depth, and 29x speedup at less than 7.5% accuracy drop. This shows

how compound compression can optimize LLMs to various latencies.

3.2.13 Discussion

Broader comparison. We now contrast our compound-compressed BERTBASE models

to alternative compression techniques, which achieve practical speedups. We compare against

DistilBERT [55], TinyBERT [77], and Block Pruning For Faster Transformers (Hybrid Filled

MvP) [75]. DistilBERT leverages KD from the 12-layer model during pre-training and fine-

tuning to obtain a 6-layer model fine-tuned for a specific downstream task. We employ a

similar approach for our 6-layer model but apply KD only for the teacher’s output and the

oBERT pruning to improve accuracy-compression trade-offs further. TinyBERT uses a spe-

cialized Transformer-layer KD scheme to distill knowledge and intermediate representations

from the 12-layer teacher at both stages, pre-training and fine-tuning on a specific task. In

contrast, we use a more straightforward approach and only employ KD from the teacher’s

outputs. Hybrid Filled MvP, the best-performing method in [75], employs semi-structured

pruning and weight reintroduction. The comparison is given in Table 3.4, where we present

30

the number of unpruned encoder weights as size, compression ratio relative to the dense

BERTBASE , inference speedup relative to the dense BERTBASE evaluated in the same in-

ference environment, and F1 score on the dev-set of the SQuAD v1.1 dataset. The results

suggest that our compressed models improve upon the current state-of-the-art techniques,

setting new, very competitive baselines concerning all metrics: accuracy, model size, and

inference speed.

Model Size Compr. Speedup F1 Dev.

BERTBASE 85.0M 1.00x 1.00x 88.54

¡ 6-layers
TinyBERT4 4.5M 18.88x 9.40x 82.10 GPU
oBERT3,90 2.1M 40.00x 14.80x 82.50 CPU

6-layers
DistilBERT 42.5M 2.00x 2.00x 86.90 GPU
TinyBERT6 42.5M 2.00x 2.00x 87.50 GPU
oBERT6,80 8.5M 10.00x 6.38x 88.20 CPU

12-layers
Hybrid F. MvP 30.7M 2.76x 1.84x 88.70 GPU
oBERT12,80 17.0M 5.00x 3.38x 89.04 CPU

Table 3.4: Compressed BERTBASE models on the SQuADv1.1 task. (oBERT6,80 stands for
the 6-layer model pruned to 80% sparsity.)

In terms of future work, we aim to investigate the distillation of intermediate model

representations [79] and the role of compound compression applied to much larger language

models, including generative ones.

3.2.14 Broader Impact

Our work is part of the general trend of producing efficient inference models that approx-

imate the performance of their larger bases. This work should help increase model efficiency,

thereby reducing the computational and, ultimately, the monetary cost of executing such

models. Moreover, it could allow models to be used by those who do not have access to

expensive specialized computing clusters. For instance, our main speedup results are aimed

at widely-available CPUs.

3.2.15 Limitations

As with any academic study, our work is not without its limitations. We split their

discussion into limitations that are inherent to our method and limitations of our present

31

study ; extensions of our work can overcome the latter. In the first category, we highlight

that our second-order method relies on approximations inherent to scaling such practices to

the BERT scale. Prior studies, e.g. [68], have carefully examined the validity of these ap-

proximations in the context of Convolutional Neural Network (CNN) models. The strength

of our empirical results can be seen as indirect evidence that these approximations also ap-

ply to BERT models. A second technical limitation is that our method requires non-trivial

additional storage costs; At the same time, we have shown that our experiments can be

executed on a single commodity GPU (NVIDIA RTX 3090); this limits the range of devices

to which the technique may be applied. However, we provide an efficient and easy way to

scale our approach with more GPUs, automatically utilized in a multi-GPU environment.

Regarding the limitations of our present study, we note that we have only considered com-

pression for the classic BERTBASE model. Our preliminary experiments, not included due to

space limitations, suggest that the same technique can extend to other models, such as Dis-

tilBERT; we have focused on BERTBASE because it has emerged as a consistent benchmark

for unstructured pruning methods, and it allows us to compare plans in a consistent setting.

Another limitation we aim to remove in future work is the focus on relatively fine-grained

sparsity types, such as unstructured and semi-structured pruning.

3.3 SPARSE*BERT: SPARSE MODELS GENERALIZE TO NEW TASKS AND
DOMAINS

3.3.1 Overview

Large Language Models have become the core architecture upon which most modern

natural language processing (NLP) systems build. These models can consistently deliver

impressive accuracy and robustness across tasks and domains, but their high computational

overhead can make inference difficult and expensive. To make using these models less costly

recent work has explored leveraging unstructured pruning to improve inference speed and de-

crease size. This section studies how models pruned using Gradual Unstructured Magnitude

Pruning can transfer between domains and tasks. Our experimentation shows that pruned

models using general domain masked language models during pretraining can transfer to new

domains and tasks without extensive hyperparameter explorations. We demonstrate that

our general sparse model Sparse*BERT can specialize simply by pretraining the compressed

architecture on unstructured biomedical text to become SparseBioBERT. SparseBioBERT

can match and exceed the performance of BioBERT with 10% of the parameters.

32

3.3.2 Introduction

Foundational Models [132] based on the Transformer architecture [36] has quickly become

the most common building block in the modern language understanding stack, providing ro-

bust language representations which can be leveraged to provide impressive accuracy on

tasks like question answering, text classification, and token classification. These Large Lan-

guage Models (LLMs) can adapt to novel domains through pretraining resulting in models

like BioBERT [133], LegalBERT [134], and SciBERT [135] has become a popular strategy

for improving performance further. While accurate and robust, LLMs are not without draw-

backs. They commonly have hundreds of millions or billions of parameters requiring large

specialized computer clusters to run inference at scale. Several approaches have been suc-

cessfully used to improve the performance of these LLMs, such as approximating attention

[136], removing portions of the models [72], and reducing the precision of activation and

weight values.

Recent work [137] [138] has shown that the application of unstructured and semi-structured

(block) pruning mechanisms on LLMs can significantly compress models with little to no

loss in accuracy. While these approaches are successful and applicable during model general

domain pretraining and task-specific fine-tuning, prior work has not studied how pruned

models transfer to new domains nor the impact of pretraining stage pruning on transfer ac-

curacy. Given that most applications would require the transfer of the general domain LLMs

to a specific application domain, it is important to study the generality and robustness of

the pruned LLMs when applied to multiple tasks in an application domain.

While existing pruning research has found it possible to prune models heavily without loss

in accuracy, most approaches have focused on the compression of individual tasks or textual

domains. These specialized models match or exceed the accuracy of the dense model but

commonly require vast amounts of hyperparameter turning and task-specific optimization

to achieve this result. Compressed models like DistillBERT [55] and TinyBERT [77] are

some of the most popular LLMs because they provide compression without any additional

know-how or optimization. For pruned models to become a common architecture for NLP

tasks, they must be as robust and easy to use as their uncompressed counterparts.

This section explores this potential and proposes Sparse*BERT, a new pruned LLM that

can adapt effectively to new domains without extensive fine-tuning or task-specific pruning.

Our work studies generalizable pruned LLMs by evaluating how well they can transfer to

previously unstudied tasks in the biomedical domain. Specifically, we study these questions

by focusing on transferring pruned and unpruned LLMs to the biomedical domain and evalu-

ating the accuracy of said models on downstream tasks like Entity Extraction(EE), Relation

33

Figure 3.3: Impact of stage and domain of pruning when evaluating BERT base uncased
on medical NLP Entity Extraction, Relation Extraction, and Question Answering. Medical
pretraining can improve performance for pruned and unpruned models, and the
performance of the pruned model and the performance of BioBERT and SparseBioBERT is
comparable.

Extraction(RE), and Question Answering(QA). Our experiments demonstrate that pruned

LLMs generalize well and are robust to domain transfer and variation in target task, dataset

size, and dataset difficulty. In summary, our contributions are as follows:

• We reinforce Zafrir et al.’s findings that LLMs pruned on the general domain data

can transfer to new domains without extensive hyperparameter tuning and extend

their work, demonstrating these pruned models can be transferred to new pre-training

domains without additional parameter optimization.

• We introduce a sparse model, Sparse*BERT, and its domain adaptation adapted for the

Medical/Bio NLP domain called SparseBioBERT. This model matches the accuracy

of the BioBERT with 10% of the active parameters.

34

3.3.3 Background and Related Work

Large Language Models such as language representation and generation models com-

monly use multiple layers of transformer encoders or decoders. Each transformer layer usu-

ally contains some form of multi-head attention (MHA) and fully-connected feed-forward

networks (FFN). The MHA is made up of multiple self-attention heads [36], each of which

has 3 sub-components: queries (Q), keys (K), and values (V). Equation 3.9 shows the ex-

pression used to compute the attention of each head, where d is the dimensionality of K.

The output of the attention heads is concatenated and fed into the FFN.

Attention(Q,K, V) = softmax

(
QK√

d

)
V (3.9)

Attention, while simple, has proven to be incredibly robust as it allows models to scale to

hundreds of layers, hundreds of attention heads [2], and seemingly most modalities [139]

[140]. Despite its generalization ability, attention-based models are also brittle as removing

less than 0.0001% of parameters can cause complete model collapse [141].

Unstructured pruning compresses a model by removing individual weights from a net-

work by setting them to zero. Pruning methods commonly remove weights based on their

saliency to the network and, to avoid model collapse, usually do so gradually while fine-

tuning the remainder of the weights. Since it is difficult to quantify the true saliency of

weight concerning a network, zeroth, first, and second-order estimation methods exist to

approximate saliency.

Zero-order methods use weight magnitudes as a proxy, i.e.., remove the smallest weights

without evaluating the impact of their removal on model accuracy. These approaches are

prevalent for Convolution Neural Networks [57] and have recently been successful for LLM

[142] [24] [137]. First-order methods like Movement Pruning [66] use a gradient-based ap-

proximation to remove the weights moving toward zero. Second-order methods like OBS

[68] estimate the impact of individual weight removal via approximations of second-order

derivatives and use it as a proxy for saliency.

Using unstructured and semi-structured pruning has proved to be a convenient way of com-

pressing LLM for efficient inference and decreased model size. For example, a BERT-Base-

Uncased model which has had 90% of its parameters pruned runs inference ∼4.5 times faster

and is 2.75 times smaller with no drop in accuracy [138]. If this compression leverages addi-

tional methods like quantization and layer dropping, inference speed can improve by 28.75

times, and model size can drop by ∼19 times.

While many successful compression approaches exist, Transformer models are fragile [60], as

35

minor perturbations can lead to model collapse. Moreover, there is a lack of understanding

of the generality and robustness of compressed LLMs when transferring them to different

tasks in an application domain, a gap our work attempts to fill.

3.3.4 Sparse*BERT: General Sparse Models Can Adapt to New Domains

We can formulate the Sparse*BERT model as θ∗, which can approximate the accuracy of

the dense model θ and does not suffer from model collapse when transferred to new domains.

The architecture of Sparse*BERT matches BERT, but a portion of its weights are pruned

and masked to avoid future updates. To ensure that our sparse model can approximate the

accuracy of the dense model, we leverage Knowledge Distillation between the outputs of the

dense and sparse networks.

Following the success of Zafrir et al. [137], we leverage Gradual Magnitude Pruning (GMP)

as shown in algorithm 3.1. Pruning models using gradual magnitude pruning are quite

effective and easy to use. At its core, the goal of GMP is to remove weights slowly enough

that the network can learn to recover after each pruning step.

To ensure that we can maximize the inference speedups, we prune each set of components

in the network independently. The structure in the model graph groups these components,

so the individual feed-forward layers, the queries, or keys, but not individual self-attention

heads.

Algorithm 3.1: Uniform Gradual Magnitude Pruning

θ0 a pretrained neural network, θt a dense pretrained neural network (distillation teacher),
D a training dataset, N number of pruning steps, σ weights to prune at each pruning
step a pruned neural network for x in 1 to N do

end
θ∗ ← θ0 for component in θ∗ do
end
w ← sort(component) θ∗ ← prune(θ∗, w, σ) θ∗ ← train(θ∗, θt, D)

return θ∗

3.3.5 Experiments

To assess how well-pruned models can transfer to new domains and determine the optimal

stage of pruning (pretraining, domain transfer, or fine-tuning), we evaluate the accuracy of

10 Biomedical biomedical datasets. Our experiments fix the training parameters for all the

36

transfer tasks and vary the stage used for pruning (no pruning, pretraining, domain transfer,

fine-tuning) and domain-specific pretraining.

3.3.6 Datasets

In all of our experiments, we focus on English-only biomedical datasets/corpora. Each

dataset we use is unmodified from its described use in the literature, and its associated and

prescribed metrics are used.

3.3.7 Finetuning Datasets

Dataset Domain Task Type Training Size Testing Size Validation Size Evaluation Metric

BC5-Chem Medical Entity Recognition 5203 5347 5385 F1
BC5-disease Medical Entity Recognition. 4182 4244 4424 F1

NCBI-disease Medical Entity Recognition 5134 787 960 F1
BC2GM Medical Entity Recognition 15197 3061 6325 F1
JNLPBA Medical Entity Recognition 46750 4551 8662 F1
ChemProt Medical Relation 18035 11268 15745 F1

DDI Medical Relation 25296 2496 5716 F1
GAD Medical Relation 4261 535 534 F1

PubMedQA Medical Question Answering 450 50 500 Accuracy
BioASQ Medical Question Answering 670 75 140 Accuracy
SQUAD General Question Answering 87599 10570 N/A F1

Table 3.5: To understand how generalizable sparse models are, we evaluate a wide set of
tasks that vary in difficulty, size, and desired output

Pretraining Datasets. To understand how the stage of pruning impacts model accu-

racy, we train models both pruned and dense models on the Medline/PubMed corpus and

the combination of English Wikipedia [143] and The Book Corpus [144] datasets.

The combination of Wikipedia and Book Corpus datasets creates a common domain lan-

guage dataset featuring 3.3 billion words, which have become the backbone for general

domain masked language modeling experimentation.

The MEDLINE/PubMed Corpus is a publicly available11 text corpus made up of journal

abstracts and documents of biomedical literature from around the world. The United States

National Institute of Health updates the corpus daily and has been the primary resource

used to train Biomedical LLMs like BioBERT [133] and PubMedBERT [145]. For our ex-

periments, we extracted our corpus on January 2022, filtered and prepared the dataset for

masked language modeling using the BioElectra’s [146] scripts12. This formatted PubMed

11https://www.nlm.nih.gov/databases/download/pubmed medline.html
12https://github.com/kamalkraj/BioNLP-Corpus

37

corpus has 34,246,348 abstracts and 4.5 billion words [146].

Finetuning Datasets. We finetune pretrained models on 10 established Biomedical NLP

datasets, encompassing 3 separate task types: Entity Recognition (ER), Relation Extrac-

tion (RE), and Question answering (QA). For ER, we use the BioCreative II Gene Men-

tion Recognition (BC2GM), [147], BC5CDR Drug/Chemical (BC5-Chem), BC5CDR Dis-

ease (BC5-Disease) [148], JNLPBA [149], and NCBI Disease [150] datasets. For RE we

use ChemProt [151], Drug-Disease Interaction (DDI) [152], and Gene-Disease Associations

(GAD) [153] datasets. We leverage BioASQ task 7B [154] and PubMedQA [155] for QA. In

addition, we analyze the impact of the finetuning dataset’s size on the optimal pruning stage

using the non-biomedical QA SQUAD [7] dataset. Details on the dataset size, evaluation

metric, and domain can be found in Table 3.5.

3.3.8 Models and Experimental Setup

Our experiments focus on the popular BERT-base-uncased language model [9], an LLM

composed of 12 transformer encoder layers with 110M parameters. We compare the perfor-

mance of our sparse language models to the dense, task-tuned BioBERT model, which is

also a 12 transformer layer model which features cased (BioBERT-Base-Cased) and uncased

(BioBERT-Base-Uncased)variants. Following previous work, we do not prune the embedding

layers of the network or any task-specific heads and focus on the ∼ 85 million parameters

found in the encoder layers. To ensure that our experiments are reproducible 13 we use the

popular open-source libraries SparseML 14 and Transformers 15.

Model Pretraining Pretraining is when the model is trained on an unsupervised NLP

dataset using a masked language modeling (MLM) approach [9]. Pretrained models are

fine-tuned on labeled task-specific datasets to optimize for task-specific accuracy.

Our experiments use existing dense pretrained models for BERT-base-uncased [9] and Pub-

MedBERT [145] and prune them using gradual magnitude pruning based on the correspond-

ing dataset and MLM approach.

During model pretraining, we train for three epochs on 4 A100 GPUS using a batch size

of 256 and a sequence length of 512, and, following early experiments and findings from

Kurtic et al. and Zafir et al., we cycle the learning rate during pretraining and found cy-

cling twice per epoch from 5e-4 to 0 to be most effective. First, we take the existing dense

13we will be releasing our code and models to allow reproducibility and extensibility
14https://github.com/neuralmagic/sparseml
15https://github.com/huggingface/transformers

38

models and run this training setup for 3 epochs to ensure model convergence; then, taking

these converged models, we retrain and apply gradual magnitude pruning over the first two

epochs. During pruning, we start from an initial sparsity of 30% and gradually prune to

a final sparsity of 90%, pruning 100 times an epoch. After model pruning, we continue to

train for one additional epoch to ensure that the sparse model is converged. Based on early

experiments, we find knowledge distillation beneficial. For all of our experiments in pre-

training, we leverage well-trained dense teachers using a hardness of 0.5 and a temperature

of 2. When pruning weights, their values are fixed to 0 and are masked to avoid future

updates. This means that our experiments effectively evaluate the discovery of the most

optimal sub-architecture.

Model Finetuning the stage of model optimization using a supervised dataset using a

task-specific training regime. In this stage, one or many classification heads have connected

the model, and these classification heads and the pretrained model are trained for optimal

performance on an individual task.

We fix the training procedure across fine-tuning tasks to isolate the effects of task-specific

hyperparameter tuning and pruning stages. Specifically, we train each model for ten epochs

on a V100 GPU using a batch size of 16, a learning rate that linearly decays from 5e-5 and

replicates using five random seeds for larger tasks and ten random seeds for smaller tasks.

We use the same setup for fine-tuning already pruned models and when applying grad-

Model Pruning Stage EE RE QA Overall

BERT-Base-Uncased
None

Fine-tuning
Pretraining

84.44
76.12
80.84

86.86
85.36
85.54

61.97
65.39
68.44

77.76
75.28
78.27

BioBERT-Base-Uncased

None
Fine-tuning

Pretraining (Medical)
Pretraining (General)

85.96
63.53
82.50
86.36

87.56
75.14
86.60
88.57

68.33
54.00
65.71
66.33

80.62
66.34
78.27
80.42

Table 3.6: Overall results on the impact of task and dataset of model pruning. Models
trained for the general domain and pruned on the general domain can transfer at equal or
better accuracy. Question Answering is the notable outlier as its small dataset size benefits
from the sparse models as their pruned architecture prevents overfitting on small datasets.

ual magnitude pruning during fine-tuning (pruning on the fine-tuning stage). For pruned

models, we preserve the sparsity patterns. When pruning models during fine-tuning, we

fine-tune the dense model for two epochs, prune over the preceding six epochs, and stabilize

the pruned network for two epochs. In our early experiments and matching prior findings

[137], we find that when pruning models on transfer tasks, accuracy is best when the learn-

ing rate cycles. Cycling only occurs when pruning during fine-tuning, and the learning rate

39

cycles at epochs 2 (start of pruning) and 8 (end of pruning). Unlike previous work, we do

not find a significant effect in accuracy improvement by leveraging knowledge distillation on

the fine-tuning task. As a result, we do not use knowledge distillation during fine-tuning.

3.3.9 Experimental Results

Model Pruning Stage BC5-Disease BC5-chem NCBI-disease BC2GM JNLPBA ChemProt DDI GAD
PubMedQA

Accuracy
BioASQ
Accuracy

Training dataset size N/A 4182 5203 5134 15197 46750 18035 25296 4261 450 670

BERT-Base-Uncased
None

Fine tuning
Pretraining

80.60
69.87
75.35

91.23
81.72
87.83

85.66
75.57
81.75

81.97
74.27
77.12

81.56
79.57
81.24

88.19
85.41
86.13

94.35
92.72
92.73

78.05
74.88
77.77

47.46
52.67
50.00

76.65
78.11
82.89

BioBERT-Base-Uncased

None
Fine tuning

Pretraining(General)
Pretraining(Medical)

83.195
66.34
83.32
80.56

93.63
66.60
93.81
92.17

83.46
52.69
84.15
78.84

86.05
59.71
87.04
81.11

84.10
62.15
81.84
81.81

90.66
80.28
90.71
88.02

95.01
87.60
95.02
93.99

77.02
57.55
79.90
77.77

54.00
54.00
51.50
49.14

82.67
82.67
81.17
82.28

Table 3.7: Performance on Complete set of tasks. Except for question-answering tasks and
NCBI-Disease, the SparseBioBERT outperforms all other models, including BioBERT,
indicating that sparse architectures can be transferred to new domains and use cases
without additional optimization.

When we evaluate results on an average of task-specific scores as shown in Table 3.6,

we can see that the SparseBioBERT model performs on par with its unpruned counter-part

and outperforms it on relation extraction and entity extraction. Results on individual tasks

can be found in table 3.7 and further consistently show how SparseBioBERT approximated

BioBERT. When pruned models do not transfer to the biomedical domain, they can perform

much worse than the unpruned models, as shown by the sizable gap between the pruned

and dense BERT-base-uncased models. This result, coupled with the performance of Sparse-

BioBERT, makes us believe that pruned models can adapt to new domains like unpruned

models but require additional domain-specific pretraining to ensure performance.

We believe these results prove that models pruned during general domain data can remove

large portions of the model without affecting the ability to transfer to new domains or tasks.

Unlike pruning on specific data domains and tasks, general domain data pruning can pre-

serve accuracy invariant to task and domain.

Unexpectedly, when evaluating biomedical QA, we improve accuracy by pruning, but only on

a general domain language model pruned downstream or the general domain Sparse*BERT.

We attribute this to the regularizing effect that pruning can have, and it likely helps in

overfitting small datasets, PubMedQA and BioASQ. Tasks. Finding those models pruned

outperform all others, and we believe the regularization provided by pruning can prevent

overfitting on these small datasets.

Our results also indicate that it is optimal to prune with general domain data and transfer

it to new tasks and domains for optimal performance. Regardless of their domain expertise,

40

BERT and BioBERT both see huge losses in accuracy when pruned on the downstream

tasks, and these same losses are not found in the model pruned during pretraining. Surpris-

ingly, the model pruned on the general domain data outperforms when pruned on biomedical

domain-specific language modeling. This gap is nearly 4 points on entity extraction and 2

points overall, almost more significant than the gap between the BERT and BioBERT.

When we evaluate the impact of pruning on individual tasks pruning in fine-tuning stage) as

shown in Table 3.7, we can see that pruning is quite sensitive to the dataset task. Looking

at the large datasets like JNLPBA in Table 3.7, there is nearly no distinction in pruning

during pretraining or fine-tuning. On the other hand, small datasets like NCBI and GAD

see a large accuracy loss from models pruned during fine-tuning.

3.3.10 Impact of Training Data Size

Noting that there is a significant variation in dataset size in the biomedical NLP tasks,

we leveraged a dataset well studied in pruning, SQUAD [7], and performed variations to the

training data size. Starting with the initial training dataset size, 88,000 items, we decreased

the size to 75%,50%,25%,10%,5%,2%,1% and evaluated the impact to performance. We

compared the dense BERT, Sparse*BERT, and pruning BERT during fine-tuning. The

sparse models each have 90% unstructured sparsity on the encoder portion of the LLM.

Each experiment was performed with five random seeds, using a batch size of 12, and trained

for 30 epochs with a learning rate decaying linearly from 5e-5 to 0. Each model’s training uses

knowledge distillation from a dense teacher with the hardness set to 0.8 and the temperature

to 2.0. For the model pruned during fine-tuning, we cycle the learning rate at the beginning

of pruning(2nd epoch) and the end of pruning(20th epoch). We evaluate model performance

on the F1 score on the unaltered dev portion of the SQUAD dataset to avoid losses in

evaluation sensitivity.

Figure 3.4 and table 3.8 demonstrate that models pruned during finetuning are not robust

to variations in data size. Model performance decays slowly from 85 to 80 until the training

data is decreased by 75%, but it quickly becomes nearly unusable when it becomes smaller

than that. The same cannot be said about the dense or the Sparse*BERT model, as they

see virtually identical losses in quality from

41

Figure 3.4: Impact of varying the training data size with pruned and dense models
showcases how pretraining pruning has similar accuracy to the dense models.

42

Training Data Portion BERT-BASE-Uncased Sparse*BERT Finetune Pruning

100 89.30 88.50 85.852
75 89.65 88.91 86.17
50 89.33 88.21 85.11
25 88.17 86.48 81.5
10 86.04 83.45 75.24
5 84.06 79.99 73.13
2 80.00 72.83 69.88
1 72.58 60.91 39.35

Table 3.8: Model accuracy as measured by F1 on dev portion of SQUAD compared to
model type and the impact of training data size. Sparse models are not as sample efficient
as their dense counterparts, but Sparse*BERT performance matches the dense model much
more than the model pruned downstream.

3.3.11 Limitations

Our approach is limited in the computational time required to generate a general sparse

LLM and the diversity of types of LLMs that we explore.

Regarding computational expense, training a sparse model requires negligible additional re-

sources, which is tractable for models with a hundred million parameters and a few billion

tokens, not for billion parameter models commonly discussed.

Our current explorations have been limited to monolingual LLMs trained in English. It is

unclear how well sparse architectures will perform in a multilingual setting, and we expect

degradation in language quality to be anything but equal across all languages.

3.3.12 Conclusion

In this section, we have introduced Sparse*BERT, a pruned LLM which builds on

successful pruning algorithms and demonstrates its ability to transfer to new domains

and tasks without additional hyperparameter search. Our experiment illustrates how well

Sparse*BERT can move to the biomedical field to become SparseBioBERT. SparseBioBert

can match the performance of BioBERT with 1
10

of the parameters and no additional task-

specific optimization. In future work, we seek to expand Sparse*BERT to new legal, financial,

and medical domains. Furthermore, we like to continue our work on more complex models

studying how sparsity impacts multilingual and multi-task models. In particular, we seek to

understand how structured and unstructured approaches in compression relate to the curse

of multilingualism.

43

3.4 OBERTA: IMPROVING SPARSE TRANSFER LEARNING VIA IMPROVED
INITIALIZATION, DISTILLATION, AND PRUNING REGIMES

3.4.1 Overview

In this section, we introduce the range of oBERTa language models, an easy-to-use set of

language models which allows Natural Language Processing (NLP) practitioners to obtain

between 3.8 and 24.3 times faster models without expertise in model compression. Specif-

ically, oBERTa extends existing work on pruning, knowledge distillation, and quantization

and leverages frozen embeddings, improves distillation, and model initialization to deliver

higher accuracy on a broad range of transfer tasks. In generating oBERTa, we explore how

the highly optimized RoBERTa differs from the BERT for pruning during pre-training and

fine-tuning. We find it less amenable to compression during fine-tuning. We explore the use

of oBERTa on seven representative NLP tasks and find that the improved compression tech-

niques allow a pruned oBERTa model to match the performance of BERTbase and exceed the

performance of Prune OFA Large on the SQUAD V1.1 Question Answering dataset, despite

being 8x and 2x respectively faster in inference.

3.4.2 Introduction

82 83 84 85 86 87 88 89 90 91 92
0
1

3

5

7

9

11

13

15

F1 Score on SQUAD v1.1

In
fe

re
n

ce
S

p
ee

d
u

p

Accuracy (F1) vs. Speedup on SQUAD v1.1

BERTbase

PruneBert
oBERTlarge

PruneOFA
oBERTa (Ours)

Figure 3.5: Performance of Sparse Language Models on the SQUAD V1.1 [156] compared
to an uncompressed BERTbase [9] with relation to realized inference improvements with
regards to mean latency with a batch size of 1.

44

The massive improvement in contextual word representations driven by the usage of

the Transformer architecture [36] has led to the wide-scale deployment of language models.

These models are customized for various use cases and tasks like question answering, senti-

ment analysis, information retrieval, and document classification and deployed into general

domains and specialized domains such as financial, medical, and legal. While these models

are effective, they commonly contain hundreds of millions of parameters, which can lead

to slow inference times without using specialized hardware accelerations like graphics pro-

cessing units (GPU) or Tensor Processing Units (TPU). Without hardware acceleration, the

inference on CPUs can be slow and impractical for real-world deployments.

Approaches such as knowledge distillation (KD) [76], quantization [81], and pruning [25]

have been leveraged to improve model efficiency and, when paired with specialized infer-

ence engines16, it is possible to accelerate inference times on CPUs and GPUs significantly.

While there has been substantial effort to create effective methods for compression [77], [78]

and improved model performance [51], general users of language models have been slower

to adopt these methods. Years after its release, the original BERTbase uncased [9] is still

the most popular language model 17, followed by the slightly compressed DistilBERT [55]

for latency-sensitive deployments. To enable broad adoption, regular users must be able to

leverage more efficient language models without additional compression steps or tuning.

We present a case study on how to compress a language model for efficient CPU inference

leveraging KD, structured pruning, unstructured sparsity, and quantization such that the

compressed models can be applied to a broad range of natural language processing (NLP)

tasks without expertise in compression of language models.

As part of this study, we release a set of efficient language models optimized to deliver the

greatest improvement in inference while minimizing losses in accuracy. We then show how

these models can be used for sparse transfer learning [137], [157] such that most compression

happens during the pre-training stage. The pre-trained sparse models can be transferred to

various NLP tasks, preserving sparsity without extensive optimization. Using these sparse

transfer models and the DeepSparse inference engine, we show these sparse models can be

fine-tuned to produce task-specific sparse models with minimal accuracy loss and result in

greatly improved inference speeds with minimal accuracy loss.

As shown in figure 3.5, oBERTa provides state-of-the-art performance for sparse language

models on the SQUAD v1.1 Question Answering dataset. oBERTa variants exceed the per-

formance of BERTbase despite being eight times faster, exceed the performance of Prune

OFAlarge and oBERTlarge while being two to five times faster. In this section, we focus on

16https://github.com/neuralmagic/deepsparse
17Based on monthly downloads on the huggingface model hub in march 2023

45

the following research questions:

• RQ1: Is RoBERTa more sensitive to unstructured pruning than BERT?

• RQ2: What impact of using a larger teacher for KD during the pruning of language

models?

• RQ3: Can frozen embeddings improve the accuracy of pruned language models?

As part of our experimentation, we release the associated models and the training regimes

to aid reproducibility and encourage efficient inference models.

In summary, our contributions are as follows:

• We provide a thorough case study on how to compress a less studied language model,

RoBERTa [51], and evaluate performance on a set of seven NLP tasks finding that it is

possible to effectively compress a language model without using its original pre-training

dataset.

• We demonstrate the impact of varying the size of teachers in KD, freezing embeddings,

and variations in learning rates when applied to sparse language models.

• We demonstrate that our compressed models can be leveraged to deliver accuracy of

over 91% on the popular SQUAD v1.1 [156] Question Answering Task with nearly three

times faster inference than the previous state-of-the-art uses of unstructured sparsity.

3.4.3 Background and Related Work

While many methods to improve model efficiency exist, the same goal generally under-

pins them: given an original model θ with an accuracy of acc(θ) and an inference cost of

c(θ) minimize the inference cost. While the methods used for compression can be highly

optimized and specialized, they can commonly be used together to deliver massive improve-

ments in inference speeds with minimal losses in accuracy.

Transformer Based Language Models such as BERT [9] and T5 [11] provide contextual

language representations built on the Transformer architecture [36] which can be specialized

and adapted for specific tasks and domains [133]. Using these models, it becomes relatively

easy to excel at a broad range of natural language processing tasks such as Question An-

swering, Text Classification, and sentiment analysis.

Unstructured Pruning is a compression approach that removes individual weights or

groups of weights in a model by applying a mask or setting the weight values to 0. This

46

compression approach has been broadly studied in computer vision [57], and many methods

can remove 70% or more of model weights with little to no loss in accuracy. Models pruned

can be 20x smaller in terms of pure model size and, when paired with a sparsity-aware

inference engine such as DeepSparse [119], provide 3-5x speedups in inference throughput.

Focused on language models, recent work has shown that it is possible to prune models

during pre-training with little to no loss in accuracy [66] [138] or during pre-training [137]

and transfer to novel domains [26] and datasets.

Structured Pruning is a compression approach that removes fundamental structural com-

ponents in a language model such as individual attention heads [71] or entire model layers

such as transformer encoders [114]. Structural pruning has become one of the most popular

methods for inference optimization as it is easy to estimate the speedups and implement.

Freezing Embeddings, as introduced by Devlin et al. [9], involves training the embedding

layer of a language model and then toggling the ability to continue to optimize, or not, the

values of in the embeddings as training continues.

Knowledge Distillation [76] is a training method where a model is not explicitly a com-

pression method but a training method where a model, called the student learns to emulate

a teacher model which is commonly larger or better performing. The loss extracted from

the original training data in KD is augmented or replaced by KL divergence between the

student and teacher model.

KD leverages the hardness parameter h to control the mixture of regular and distillation loss

(with a higher distillation favoring the KL divergence loss) and a temperature parameter t

to control the softness of the distribution.

As applied to language models, the approach has been used to improve the performance of

structurally pruned language models resulting in models like DistilBERT [114] and Tiny-

BERT [77].

Quantization precision for the model weights and activations to lower the computational

requirements of model execution. While researchers have explored reducing representation

to binary representations [158], current hardware limits inference speedups to 8 or 4-bit rep-

resentations. Quantization can be applied after the model is trained in a one-shot fashion,

but this can lead to large losses in accuracy because of rounding errors.

To avoid this pitfall, use quantization-aware training (QAT), where the forward pass of the

model is simulated with lower precision. In contrast, the backward pass happens in full

precision. By using QAT models, learn to be robust to rounding errors and can result in

Quantization having little to no loss in accuracy. In language models, research has produced

quantized language models such as Q8BERT [81] and is commonly used in conjunction with

structured and unstructured pruning [137] as a way of introducing compounding compres-

47

sion.

Other approaches, such as early exiting [115] or token pruning [116], have also improved

inference efficiency. Still, the inference improvements can be very dataset dependent and, as

a result, out of our experimentation frame.

3.4.4 Improving Sparse Transfer Learning

While quantization and pruning have been well studied as applied to language models,

work has studied the compression BERTbase or BERTlarge. Despite existing research, we find

that a clear case study that explores how best to create a family of compressed models is

lacking, and this work seeks to remedy that. As part of our research, we compare the impact

of varying pruning methods, pruning stage, teachers for KD, and freezing portions of the

model as applied to the RoBERTa language model.

While performing task-specific compression allows NLP practitioners to broadly adopt im-

provements in inference efficiency, having access to pre-optimized models is key. We produce

a family of 8 general purpose language models, collectively called oBERTa, which progres-

sively get smaller and faster with minimal losses in accuracy.

The oBERTa models leverage a combination of structured and unstructured pruning to pro-

vide a set of compressed models which can meet a wide set of latency needs. This compression

approach has not been extensively documented nor discussed. Our approach to producing

the oBERTA models builds on prior explorations of the combination of compression methods

[138] and addresses compression approaches in a staged manner as shown in Figure A.8.

First, we create three structural variants starting with a RoBERTabase model. The base uses

12 transformer layers, the medium uses 6, and the small uses 3. Following prior work, we

select interleaved layers for the 6-layer model and the first, middle, and last layers for the

3-layer model. Then, each of these 3 models is further pre-trained using masked language

modeling on the Wikipedia-Bookcorpus text dataset, leveraging KD from a RoBERTalarge

teacher. After that, each model is pruned using gradual magnitude pruning (GMP) to a de-

sired sparsity level (90% and 95%) during additional pre-training based on masked language

modeling, similar to Zafir et al. [137]. Further background on the RoBERTA model and

why we did not prune using the WebText corpus can be found in the appendix.

After pre-training, the sparsity profile is fixed, and models are fine-tuned and quantized

on their target task with a small set of variable hyperparameters. Experimentation on

the impact of larger teachers, frozen embeddings, and variations in pruning algorithms are

discussed in subsequent portions of this work.

48

3.4.5 Downstream Compression

We explore the impact of introducing unstructured sparsity during task-specific fine-

tuning. We repeat each experiment with three different seeds and report the average F1

and Exact Match (EM) metrics in tables 3.10 and 3.11. Following a basic hyperparameter

sweep, our baseline RoBERTabase model achieves a performance of 83.95 EM and 91.13 F1

in the broadly used question-answering benchmark SQUAD V1.1 [156].

We also perform unstructured pruning varying the sparsity 50-95% and the pruning method:

GMP and OBS. We prune each model for eight epochs, followed by an additional two epochs

to allow the network to stabilize and re-converge. Knowledge distillation is used during train-

ing with the dense baseline model as a teacher, hardness set to 1.0 and temperature set to

5.0. Further hyperparameters are in the appendix A.2.7.

Table 3.9 shows the impact of sparsity on BERTbase, as reported by previous work. Com-

paring these results with tables 3.10 and 3.11, we conclude that RoBERTa is more sensitive

to pruning than BERT, although RoBERTabase pruned with OBS remains significantly more

accurate than BERTbase for the same level of sparsity.

Table 3.10 shows that pruning RoBERTAbase to 90% with OBS results in a relative drop in

F1 of 1.59%, which is three times the relative drop reported for BERTbase with the same

pruning algorithm. Moreover, table 3.11 shows that RoBERTAbase becomes very sensitive to

pruning with GMP for sparsities above 85%, with the relative drop in F1 increasing almost

threefold between 85% and 90% sparsity. We conjecture that RoBERTa is more sensitive

to pruning than BERT because the latter is relatively under-trained [51], making the more

optimized RoBERTa more sensitive to the loss in expressivity caused by pruning.

Model Sparsity F1 Impact
BERTbase [9] 0 88.50 N/A
BERTlarge [9] 0 90.9 N/A
RoBERTabase [51] 0 91.13 N/A
RoBERTAlarge [51] 0 94.60 N/A
PruneBertbase [66] 90 84.90 -4.07 %
PruneOFAlarge [137] 90 87.25 -1.41 %
oBERTlarge [138] 90 87.98 -0.58%
GMP⋆large [159] 90 86.7 -2.03%

Table 3.9: Performance of existing dense and sparse language models on the SQUAD v1.1
Question Answering Dataset

49

Sparsity (%) EM Impact F1 Impact

50 84.80 1.01% 91.49 0.40%

60 84.64 0.82% 91.33 0.22%

70 84.42 0.56% 91.13 0.00%

80 84.64 0.82% 91.33 0.22%

85 82.89 -1.26% 90.12 -1.11%

90 82.48 -1.75% 89.68 -1.59%

95 79.01 -5.89% 87.05 -4.47%

Table 3.10: Impact of Sparsity introduced by OBS on the F1 and EM scores of pruned
RoBERTa models on the SQUAD V1.1 Dataset

Sparsity (%) EM Impact F1 Impact

50 84.90 1.13% 91.46 0.36%

60 84.27 0.38% 90.91 -0.24%

70 83.37 -0.69% 90.30 -0.91%

80 81.64 -2.76% 88.86 -2.49%

85 81.64 -2.76% 88.86 -2.49%

90 76.51 -8.86% 84.90 -6.83%

95 69.39 -17.34% 79.35 -12.93%

Table 3.11: Impact of Sparsity introduced by GMP on the F1 and EM scores of pruned
RoBERTa models on the SQUAD V1.1 Dataset

3.4.6 Upstream Compression

Based on our fine-tuning experiments, achieving a high degree of sparsity on the RoBERTA

model leads to improvements in performance, but there are greater than expected losses in

accuracy. Additionally, such compression is task-specific and non-amortizable, so we explore

how best to generate general pruned RoBERTa models. While we eventually apply the win-

ning set of training combinations to all of our variants of oBERTa, we first seek to answer the

following questions: Does GMP or OBS perform better during pretraining pruning? Does

Freezing the Embeddings during pretraining pruning further improve performance? Does

the use of larger teachers further improve performance?

We prune various models while varying individual variables during pretraining to evalu-

ate these questions. We experiment by pruning an oBERTabase (12 layers) model to 90%

and 95% sparsity on all non-embedding layers. All pretraining pruning happens using the

Wikipedia-BookCorpus dataset, where we train for five epochs using a learning rate of 5e-5

and a batch size of 256 using 4 A100 GPUS. To evaluate the impact of these models, we eval-

uate performance on the previously used SQUAD v1.1 question-answering dataset, where

we train with a fixed training regime of 10 epochs with a learning rate of 1.5e-4 based on

the work of Kurtic et al. We train without KD for each finetuning run with an unpruned

50

RoBERTabase or an unpruned RoBERTalarge. Details for the hyperparameters used to train

all teacher models can be found in the appendix A.2.5.

Comparing the use of OBS vs. GMP as shown in table 3.12, we can see that GMP consis-

GMP OBS

Model F1 Impact EM Impact F1 Impact EM Impact
RoBERTAbase 92.18 0.00% 85.59 0.00% 92.18 0.00% 85.59 0.00%
oBERTa 90% No KD 88.34 -4.17% 80.19 -6.31% 87.72 -4.83% 79.35 -7.29%
oBERTa 90% RoBERTAbase KD 88.75 -3.72% 81.35 -4.95% 88.60 -3.88% 81.37 -4.93%
oBERTa 90% RoBERTAlarge KD 89.65 -2.75% 83.12 -2.88% 89.63 -2.76% 82.94 -3.09%
oBERTa 95% No KD 86.58 -6.07% 78.81 -7.92% 84.90 -7.90% 76.82 -10.25%
oBERTa 95% RoBERTAbase KD 86.99 -5.63% 79.41 -7.22% 86.14 -6.55% 78.63 -8.13%
oBERTa 95% RoBERTAlarge KD 87.60 -4.97% 80.44 -6.01% 86.14 -6.55% 79.84 -6.72%

Table 3.12: Impact on F1 of SQUAD V1.1 of using OBS vs. GMP as the pruning method
during pretraining. Impact measures the relative loss in performance vs. the unpruned
RoBERTabase baseline.

tently outperforms OBS. This is the opposite of what is seen when pruning downstream or,

in prior work, pruning BERT. We attribute this inversion to not using the web-text dataset

and leveraging the Wikipedia-book-corpus instead. We believe that without access to the

original training corpus OBS is leading to overfitting of the sparse models, a dataset that is

not its intended target.

Evaluating the impact of variations in the hardness of KD as shown in table 3.13, there

Hardness 0.5 Hardness 1.0

Model F1 Impact EM Impact F1 Impact EM Impact
RoBERTAbase 92.18 0.00% 85.59 0.00% 92.18 0.00% 85.59 0.00%
oBERTa 90% No KD 88.21 -4.31% 80.19 -6.31% 88.34 -4.17% 80.19 -6.31%
oBERTa 90% Base KD 89.19 -3.25% 81.74 -4.50% 88.75 -3.72% 81.35 -4.95%
oBERTa 90% Large KD 90.14 -2.21% 83.51 -2.43% 89.65 -2.75% 83.12 -2.88%
oBERTa-95 No KD 85.82 -6.90% 77.77 -9.14% 86.58 -6.07% 78.81 -7.92%
oBERTa-95 Base KD 86.98 -5.64% 79.23 -7.43% 86.99 -5.63% 79.41 -7.22%
oBERTa-95 Large KD 87.66 -4.91% 80.40 -6.07% 87.60 -4.97% 80.44 -6.01%

Table 3.13: Impact on F1 of SQUAD V1.1 by hardness in KD during pretraining pruning.
Impact measures the relative loss in performance vs. the unpruned RoBERTabase baseline.

is a bit more of a muted set of conclusions. The 95% sparse models perform better with a

hardness of 1.0, while the 90% models do better with a hardness of 0.5. Given that our goal

is to preserve most of the RoBERTa model without actually using its large dataset, we set

our hardness to 1.0 as it keeps the model from explicitly learning the new dataset.

When we evaluate the impact of freezing embeddings during pretraining, as shown in table

51

Frozen Embeddings Trained Embeddings

Model F1 Impact EM Impact F1 Impact EM Impact

RoBERTabase 92.18 0.00% 85.59 0.00% 92.18 0.00% 85.59 0.00%

oBERTabase 90% no KD 87.71 -4.85% 79.62 -6.98% 88.21 -4.31% 80.19 -6.31%

oBERTabase 90% RoBERTabase KD 89.7 -2.69% 81.74 -4.50% 89.19 -3.24% 83.07 -2.94%

oBERTabase 90% RoBERTalarge KD 89.59 -2.81% 82.98 -3.05% 90.14 -2.21% 83.51 -2.43%

Table 3.14: Impact on F1 of SQUAD V1.1 with respect to the use of frozen embeddings or
not during pretraining pruning. Impact measures the relative loss in performance vs. the
unpruned RoBERTabase baseline.

3.14, we find strong evidence that using frozen embeddings consistently leads to worse per-

formance and, as a result, does not freeze embeddings during our model pruning. Looking

at the impact of varying the size of the teacher for pretraining KD as shown in table 3.15,

we unsurprisingly find clear evidence that using a larger teacher during pretraining pruning

leads to improvements in performance.

Using these experiments, we generate the recipe, which we then use to create the many

Base Upstream Teacher Large Upstream Teacher

Model F1 Impact EM Impact F1 Impact EM Impact

RoBERTAbase 92.18 0.00% 85.59 0.00% 92.18 0.00% 85.59 0.00%

oBERTa 90% no KD 88.34 -4.17% 80.59 -5.84% 88.1 -4.43% 80.06 -6.46%

oBERTa 90% Base KD 88.75 -3.72% 81.35 -4.95% 89.22 -3.21% 82.02 -4.17%

oBERTa 90% Large KD 89.65 -2.74% 83.12 -2.89% 89.98 -2.39% 83.14 -2.86%

Table 3.15: Impact on F1 of SQUAD V1.1 with respect variation is the size of the teacher
in KD during pretraining pruning. Impact measures the relative loss in performance vs.
the unpruned RoBERTabase baseline.

variants of oBERTa. We pre-train models using KD using a RoBERTalarge teacher with a

hardness of 1.0; we do not freeze the embeddings and use GMP to prune.

3.4.7 Experimental Results

Based on the aforementioned experiments, we generate 8 variants of oBERTa, each with

a different size and sparsity profile; details can be found in table A.11. Within this table,

we report the impact on the model size as measured by the raw and compressed size of

the ONNX 18 model file. Embeddings are unpruned, and each layer is pruned to the target

sparsity profile independent of the rest of the model. As a result, the overall sparsity profile

18https://onnx.ai/

52

may vary as modules in the network may not be able to reach exactly 90% or 95% sparsity.

Using these inference-optimized models, we evaluate their sparse transfer performance by

finetuning these models on their target task using a fixed training regime and minor hyper-

parameter exploration. For each task, we train them for 10 epochs or 20 (10 of which are

Quantization Aware Training), with the longer schedule being reserved for models which are

being quantized.

We evaluate performance on a benchmark of diverse NLP tasks ranging from question an-

swering, sentiment analysis, document classification, token classification, and text classifi-

cation. For question answering, we leverage the SQuAD v1.1 [156] and SQuAD V2.0 [160]

datasets. We leverage the SST-2 [161] dataset for sentiment analysis. For text classification,

we use the Quora Duplicate Query Detection (QQP) [162] and the MNLI [127] datasets. We

leverage the IMDB [163] dataset for document classification and CONLL2003 [164] for token

classification.

Looking at performance on question answering as shown in table 3.16 and 3.17. Moving

Sparse Transfer Sparse Transfer With Quantization

model F1 Recovery EM F1 Recovery EM

oBERTabase 92.15 100.00% 85.78 93.18 101.11% 87.29

oBERTabase 90\% 90.95 98.69% 84.42 89.46 97.08% 82.61

oBERTabase 95\% 89.84 97.49% 83.08 89.23 96.83% 81.12

oBERTaMEDIUM 90.37 98.06% 83.84 83.77 90.91% 90.37

oBERTaMEDIUM 90\% 89.26 96.86% 82.18 88.65 96.20% 81.88

oBERTaSMALL 84.87 92.09% 76.55 84.82 92.05% 76.77

oBERTaSMALL 90\% 84.66 91.87% 76.18 82.18 92.18% 74.21

Table 3.16: Sparse Transfer performance of the oBERTA family on the SQUAD V1.1
dataset. The sparse transfer was performed over 10 epochs and sparse transfer with
quantization over 20. Recovery is based on the relative performance of the unpruned
oBERTabase.

to text classification on QQP and MNLI as shown in tables 3.19 and 3.18 Shifting focus

to document classification as shown in table 3.20 and sentiment analysis in 3.21 Finally,

looking at performance on token classification as shown in table 3.22

3.4.8 Inference Benchmark

To evaluate the performance of our inference-optimized models, we benchmark perfor-

mance using the popular DeepSparse library version 1.3.2 19 and an Intel Xeon Gold 6238R

Processor. Performance is measured using models that have been sparse-transferred to the

19pip install deepsparse==1.3.2

53

Sparse Transfer Sparse Transfer With Quantization

model F1 Recovery EM F1 Recovery EM

oBERTabase 82.77 100.00% 79.56 85.298 103.06% 82.347

oBERTabase 90\% 81.33 98.26% 78.27 81.43 98.38% 78.92

oBERTabase 95\% 77.98 94.22% 74.67 78.09 94.35% 74.82

oBERTaMEDIUM 77.51 93.65% 74.25 78.137 94.41% 75.179

oBERTaMEDIUM 90\% 76.64 92.60% 73.34 76.24 92.11% 73.51

oBERTaSMALL 71.54 86.44% 67.93 71.591 86.50% 68.087

oBERTaSMALL 90\% 70.79 85.53% 67.31 69.35 87.79% 65.21

Table 3.17: Sparse Transfer performance of the oBERTA family on the SQUAD V2.0
dataset. The sparse transfer was performed over 10 epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative performance of the unpruned
oBERTabase.

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery Accuracy(MM) Accuracy Recovery Accuracy(MM)

oBERTabase 87.88% 100.00% 87.57% 88.06% 100.20% 88.01%

oBERTabase 90% 85.17% 96.91% 84.73% 85.09% 96.83% 84.76%

oBERTabase 95% 84.32% 95.95% 84.08% 83.73% 95.28% 83.83%

oBERTaMEDIUM 85.29% 97.05% 85.17% 83.62% 95.15% 83.74%

oBERTaMEDIUM 90% 81.61% 92.87% 81.32% 82.37% 93.73% 81.79%

oBERTaSMALL 80.80% 91.95% 81.55% 81.10% 92.29% 81.51%

oBERTaSMALL 90% 79.23% 90.15% 79.24% 79.14% 90.06% 79.42%

Table 3.18: Sparse Transfer performance of the oBERTA family on the MNLI dataset.
Sparse transfer was performed over 10 epochs and sparse transfer with quantization over
20. Recovery is based on the relative performance of the unpruned oBERTabase.

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery F1 Combined Accuracy Recovery F1 Combined

oBERTabase 91.52% 100.00% 90.09% 88.66% 89.86% 98.18% 88.12% 86.73%

oBERTabase 90% 91.01% 99.44% 89.47% 87.92% 91.21% 99.66% 89.68% 88.16%

oBERTabase 95% 90.85% 99.26% 89.21% 87.58% 90.72% 99.12% 89.08% 0.87%

oBERTaMEDIUM 91.35% 99.81% 89.90% 88.44% 91.33% 99.79% 89.80% 88.28%

oBERTaMEDIUM 90% 90.48% 98.86% 88.85% 87.21% 90.60% 99.00% 89.01% 87.42%

oBERTaSMALL 90.72% 99.13% 89.21% 87.71% 89.74 98.06% 87.99 86.25

oBERTaSMALL 90% 89.74% 98.06% 87.99% 86.25% 89.73 98.04% 87.98 86.08

Table 3.19: Sparse Transfer performance of the oBERTA family on the QQP dataset. The
sparse transfer was performed over ten epochs, and sparse transfer with quantization over
20. Recovery is based on the relative performance of the unpruned oBERTabase.

SQuAD v1.1 dataset and exported to a standard ONNX model format. Benchmarks are run

on 4 and 24 cores and a sequence length of 384 with batch sizes of 1, 16, and 64. For each

model, the benchmark is run for 60 seconds with a warm-up period of 10 seconds, and we

report the throughput (items per second) and the mean, median, and standard deviation per

item latency. We present a set of summary statistics of relative speedup across batch sizes

54

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery Accuracy Recovery

oBERTabase 95.24% 100.00% 95.44% 100.21%

oBERTabase 90% 93.64% 98.32% 93.28 97.94%

oBERTabase 95% 93.48% 98.15% 92.80 97.23%

oBERTaMEDIUM 93.36% 98.03% 94.08 98.78%

oBERTaMEDIUM 90% 92.24% 96.85% 92.08 96.69%

oBERTaSMALL 93.04% 97.69% 92.52 97.15%

oBERTaSMALL 90% 91.60% 96.18% 91.28 95.84%

Table 3.20: Sparse Transfer performance of the oBERTA family on the IMDB dataset. The
sparse transfer was performed over ten epochs, and sparse transfer with quantization over
20. Recovery is based on the relative performance of the unpruned oBERTabase.

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery Accuracy Recovery

oBERTabase 94.60 100.00% 92.66 97.95%

oBERTabase 90% 92.78 98.08% 92.546 97.83%

oBERTabase 95% 91.51 96.74% 91.399 96.62%

oBERTaMEDIUM 92.89 98.19% 91.06 96.26%

oBERTaMEDIUM 90% 88.76 93.83% 89.91 95.04%

oBERTaSMALL 90.48 95.64% 91.28 96.49%

oBERTaSMALL 90% 89.34 94.44% 88.65 93.71%

Table 3.21: Sparse Transfer performance of the oBERTA family on the SST-2 dataset. The
sparse transfer was performed over ten epochs, and sparse transfer with quantization over
20. Recovery is based on the relative performance of the unpruned oBERTabase.

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery F1 Accuracy Recovery F1

oBERTabase 99.26% 100.00% 95.51% 99.30% 100.05% 95.98%

oBERTabase 90% 99.11% 99.85% 94.98% 99.05% 99.79% 94.51%

oBERTabase 95% 98.89% 99.63% 93.32% 98.75% 99.48% 92.61%

oBERTaMEDIUM 99.04% 99.77% 94.39% 99.18% 99.92% 95.15%

oBERTaMEDIUM 90% 98.79% 99.53% 93.31% 98.73% 99.46% 92.70%

oBERTaSMALL 99.01% 99.75% 94.00% 98.98% 99.72% 94.13%

oBERTaSMALL 90% 98.47% 99.20% 91.13% 98.25% 98.98% 89.79%

Table 3.22: Sparse Transfer performance of the oBERTA family on the CONLL-2003
dataset. The sparse transfer was performed over ten epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative performance of the unpruned
oBERTabase.

and inference server configurations as shown in table 3.23. Full inference performance results

can be found in the appendix. In analyzing performance, we can see that the introduction

55

24 Cores 4 Cores

Model BS 1 BS 16 BS 64 BS 1 BS 16 BS 64

oBERTabase 1.00 1.00 1.00 1.00 1.00 1.00

oBERTabase Quantized 3.10 4.29 4.46 4.09 4.31 4.32

oBERTabase 90% 3.29 3.80 3.80 3.60 3.34 3.40

oBERTabase 90% Quantized 4.12 7.05 7.37 7.67 7.59 7.40

oBERTabase 95% 8.72 4.56 4.65 4.12 3.85 4.37

oBERTabase 95% Quantized 4.73 8.22 8.56 9.41 9.06 8.68

oBERTaMEDIUM 1.96 1.99 1.99 1.96 1.99 2.02

oBERTaMEDIUM Quantized 6.20 8.04 8.44 8.43 8.33 8.45

oBERTaMEDIUM 90% 6.35 7.41 6.84 7.83 6.56 6.72

oBERTaMEDIUM 90% Quantized 8.94 12.86 13.65 14.99 14.81 14.95

oBERTaSMALL 3.89 3.96 3.99 3.95 3.97 4.03

oBERTaSMALL Quantized 12.47 14.12 14.08 15.50 15.48 15.70

oBERTaSMALL 90% 12.22 14.40 14.67 14.05 14.19 14.13

oBERTaSMALL 90% Quantized 16.21 21.35 23.96 29.77 27.14 27.58

Table 3.23: Latency reduction of the oBERTa family concerning the unpruned oBERTabase

as measured on 24 and 4 cores. Speedup is measured relative to the latency reduction in
MS/batch, and BS refers to batch size.

of quantization to a dense model delivers roughly a 4x speedup while quantization on sparse

models is closer to 2x. With the introduction of sparsity, 90% leads to slightly under 4x

speedup, while 95% leads to slightly over 4x. The impact of structural pruning is roughly

equivalent to the size of the as a 6-layer model is two times faster than a 12-layer, and a

3-layer model is four times faster. Since these different compression forms are additive, we

can see that a small (3-layer) 90% quantized model performance is 24x (4*4*2). Looking at

the variation in a speedup by batch size and the number of cores, we can see that allocating

more cores leads to a smaller gap in inference speedup, especially with small batches. From

this, we extract that compression is significant when performing streaming inference (batch

size 1) on smaller CPUs.

Next, we go ahead and benchmark the oBERTa model performance against existing sparse-

transfer models such as oBERT and PruneOFA using the models that have been published 20

in Neural Magic’s Sparse-Zoo 21. We run these models using four cores and a batch size of 1

and compare their speedup (or slowdown) relative to their performance on the SQUAD v1.1

question-answering benchmark. Results can be found in table 3.24 and full results in A.38.

Looking at the improvements in accuracy and inference throughput, we find the oBERTa

models are 1.3 to 4 times better than models with approximately the same accuracy.

Looking at the competitive results, we find that the oBERTa-* models can deliver signifi-

20Since the PruneBERT model is not available in the zoo, we extrapolate numbers using the performance
of our oBERTabase pruned 90% as both models feature 12 transformer encoders and 90% sparsity.

21https://sparsezoo.neuralmagic.com/

56

Vs. BERTbase Vs. BERTlarge

Model F1 Recovery Speedup Recovery Speedup
oBERTabase 90% 91.00 102.77% 3.57 100.44% 20.21
oBERTlarge 95% Quantized 90.21 101.87% 3.41 99.57% 19.31

prunedOFAlarge 90% Quantized 89.96 101.59% 2.38 99.29% 13.47
oBERTabase 90% Quantized 89.46 101.03% 7.62 98.74% 43.07

oBERTaMEDIUM 90% 89.26 98.99% 7.78 96.75% 43.99
obertbase 90% Quantized 88.00 99.38% 6.96 97.13% 39.37

oBERTaSMALL 90% 84.66 90.97% 13.95 88.91% 78.91
pruneBERT 90% 84.90 95.88% 3.57 93.71% 73.82

Table 3.24: Speedups of the oBERTa-family compared to existing published sparse models
compared to the performance of BERTbase and BERT-large. Speedup measures the
reduction in latency of MS/batch. oBERTabase 90% exceeds the accuracy of oBERTlarge

95% quantized despite being faster, oBERTabase 90% quantized performs at the level of
pruneOFAlarge 90% Quantized despite being 3x faster, oBERTaMEDIUM 90% can outperform
oBERTbase 90% Quantized despite being 30% faster, and oBERTaSMALL 90% performs on
par with pruneBERT 90% despite being nearly four times faster.

cant gains in performance (F1) relative to speedups. The oBERTabasePruned 90% Quantized

model achieves an undertaking that nearly matches pruneOFA-large 90% Quantized while

delivering about 13x faster inference. Similarly, the oBERTASMALL 90% model provides

similar accuracy to PruneBERT despite being over four times faster.

3.4.9 Discussion and Conclusion

Sparse Models require higher learning rates as shown in the tables in A.2.8 sparse

language models can be used as general-purpose contextual language models but require the

use of a much higher learning rate. When using structurally pruned models like the 6-layer

oBERTaMEDIUM and the 3-layer oBERTaSMALL, the optimal learning rate does not vary much

within the same task despite the model size. With the introduction of sparsity, the learning

rate needs to scale, usually by a factor of five or ten. We find this counterintuitive as the

sparse models have fewer parameters to tune, so we would expect them to prefer a much

lower learning rate. We attribute this to the loss of expressivity in the network driven by its

sparsity. Since the network has fewer degrees of freedom to optimize the points which can

be optimized moves much more than those that can’t.

Larger models compress better as shown by the gap between the sparse and dense

models and the gap between models and their quantized counterparts. While 12-layer models

can receive 90 or 95 % sparsity and quantization with little to no loss in accuracy, the

57

three and 6-layer models see a much bigger dip. This aligns with Li et al. 2020 [103] in

which they demonstrate that larger models are more robust to pruning and quantization.

Empirically, this makes sense as the smaller models have fewer degrees of freedom, and other

portions of the network cannot counteract the reduction in expressivity caused by pruning

and quantization.

Bigger Teachers are not always better as shown in the table in A.2.9 the introduction

of larger teachers does not always lead to improvements in accuracy. The impact is highly

task and model dependent as some datasets like MNLI or QQP see the little impact in using

larger teachers, yet datasets like SQUAD or SQUAD v2.0 see large impacts, which are even

more pronounced when the student model is smaller.

Frozen embeddings can help, but not always. As shown by A.2.10, the impact of freezing

the embeddings is highly task-specific and inconsistent across tasks or models. In question

answering, freezing leads to 1-2 point movement for unpruned models and 5-7 points for

pruned models. In other tasks like QQP and MNLI, the impact of frozen embeddings tends

to be minor or none.

3.5 CONCLUSION AND KEY TAKEAWAYS

In this chapter, we have deeply examined how to apply, transfer, and leverage unstruc-

tured pruning to improve the inference efficiency of auto-encoder language models. By using

specialized training regimes and compression approaches, we showed that it is possible to

introduce large amounts of sparsity in a model without compromising performance. These

compressed models can be used in new tasks and domains like an uncompressed model. This

ability to compress and transfer demonstrates how using unstructured pruning can be an

effective and scalable method of improving the inference efficiency of many NLP models and

tasks. In our exploration of aligning dense retrievers, we find the following key takeaways:

When possible, distill. Knowledge distillation is key for compressing models without

losing task accuracy. While larger models do not always yield better results, using an un-

compressed model as a target representation can result in major improvements in model

performance.

Compression approaches are mostly additive. Compression approaches like quanti-

zation, structured pruning, and unstructured pruning can lead to large improvements in

inference efficiency. When these approaches are combined, the speedups are even greater.

However, when compression approaches are combined, realized speedups separately do not

lead to fully additive inference speedups. For example, if quantization can give a 4x speedup

and pruning can give 3.8x combined, they might lead to 7.2x, which is close but not exactly

58

the 7.8x of perfectly additive systems.

Compress once, transfer forever. Language models compressed during model pretrain-

ing can transfer to novel domains and tasks without significant loss in accuracy. Moreover,

models are compressed using general domain pretraining transfer to new domains without

any further optimizations, and such transferred models can outperform task-specific com-

pression. This leads us to believe it is optimal to create general domain compressed models

which can be used without further compression.

59

CHAPTER 4: ROBUST AND EFFICIENT SEMANTIC RETRIEVAL

4.1 OVERVIEW

Driven by its ubiquity, information retrieval has become a focal area for applying lan-

guage models. Driven by improvements in representation models and nearest neighbor search

methodology, bi-encoders, often called dense retrievers, have become incredibly popular.

While these models effectively retrieve content, they are not without fault. Their reliance

on language models makes them more expensive than traditional term-based systems and

more robust to query noise.

This chapter discusses how representation alignment can be leveraged to improve model in-

ference efficiency and performance on noisy inputs. First, our work examines KALE, where

representation alignment is combined with structured pruning and asymmetry between mod-

els to improve inference efficiency while minimizing losses in retrieval accuracy. Next, our

work discusses CAPOT, an alignment of representations focused on improving the perfor-

mance of language models on noisy inputs without the complexities of data augmentation.

Both works demonstrate that Kullback-Leibler divergence between two query representa-

tions can compress or improve a model with minimal overhead. This alignment can be done

after training.

4.2 QUICK DENSE RETRIEVERS CONSUME KALE: POST TRAINING KULLBACK
LEIBLER ALIGNMENT OF EMBEDDINGS FOR ASYMMETRICAL DUAL
ENCODERS

4.2.1 Overview

In this section, we consider the problem of improving the inference latency of language

model-based dense retrieval systems by introducing structural compression and model size

asymmetry between the context and query encoders. First, we investigate the impact of pre

and post-training compression on the MSMARCO, Natural Questions, TriviaQA, SQUAD,

and SCIFACT, finding that asymmetry in the dual-encoders in dense retrieval can lead to

improved inference efficiency. Knowing this, we introduce Kullback–Leibler Alignment of

Embeddings (KALE), an efficient and accurate method for increasing the inference efficiency

of dense retrieval methods by pruning and aligning the query encoder after training. Specif-

ically, KALE extends traditional Knowledge Distillation after bi-encoder training, allowing

for effective query encoder compression without full retraining or index generation. Using

60

KALE and asymmetric training, we can generate models which exceed the performance of

DistilBERT despite having 3x faster inference.

4.2.2 Introduction

84.5 85 85.5
100

150

200

300

400

Recall at 100

Q
P

S
Recall at 100 vs. Queries Per Second (QPS) on the NQ dataset

BERTBASE

DistilBERT
BERTBASE-KALE-6layer (ours)
BERTBASE-KALE-3layer (ours)
BERTBASE-KALE-2layer (ours)

Figure 4.1: Using KALE and asymmetric training on the lead to when measuring QPS vs.
Recall at 100 on the NQ dataset. Using Asymmetry and KALE, it is possible to 3x QPS
with no loss in accuracy and 4.5x with 1% loss in performance. We calculate QPS as the
mean number of queries per second with a batch size of 1 and a max sequence length of 32
on a T4 GPU

A bi-encoder-based retrieval, often called dense retrieval, is a retrieval function that

leverages the vector representation of queries and documents as a proxy for relevance. Using

two encoders, one for the query and one for the document, the input data is mapped into a

common latent space where closeness becomes a proxy for relevance.

Dense retrievers have become increasingly popular due to their ability to capture the seman-

tic relationships between query and document terms. However, bi-encoder-based models

can also be computationally expensive, particularly when dealing with large datasets. As a

result, there has been a growing interest in methods for compressing these models to reduce

their computational complexity without sacrificing performance.

In this section, we explore the role of asymmetry in the size of query and document en-

coders that leverage language models. Through experiments on several benchmarks, we

demonstrate that our approach can significantly reduce the number of parameters in the

bi-encoder model without sacrificing performance.

61

As shown in figure 5.2, the combination of asymmetric bi-encoders and post-training KALE

allows for 3x more queries per second (QPS) than an uncompressed bi-encoder with less

than 1% loss in accuracy and nearly 5x with less than 2%.

Building on the favorable implications of asymmetry for efficient inference, we introduce a

compression mechanism called Kullback-Leibler Allingment of Embeddings (KALE). KALE

uses a divergence-based alignment of representations to compress models without requiring

any form of retraining or index regeneration.

To ground our approaches, we evaluate the effectiveness of KALE and asymmetry on several

benchmark datasets and compare the results to existing efficient inference approaches.

The following research questions drive our work:

• Is the performance of dense retrieval methods more driven by the query or document

encoder size?

• Is it possible to compress query encoders without retraining and index regeneration?

• How can dense retrieval asymmetry and post-training alignment be leveraged to im-

prove query encoder latency?

It is in answering these questions that we deliver the following contributions:

• We present the first robust study on the role of document-query encoder symmetry,

demonstrating that the size of the document encoder dominates performance.

• We introduce and demonstrate the effectiveness of KALE, a post-training compression

and alignment approach demonstrating its effectiveness and

• We empirically demonstrate on various benchmarks how Asymmetric Compression can

lead to 4.5 better QPS with 1% loss in recall accuracy at 100.

4.2.3 Method

The use of representation models for retrieval begins with a document space d and a

query space q, each generated by some model m. Models do not need to share the same

initialization, shape, or size, but their representation vectors must share size without some

projection. These two models learn a notion of relevance by training to minimize the dis-

tance of positive query-document pairs as shown in equation 4.1 where x is a query vector

and y is a document vector, and · denotes the dot product of the vectors.

L = 1− x · y
|x||y|

(4.1)

62

The query and document encoder models are commonly initialized with a pre-trained lan-

guage model such as BERT. Then, using pairs of labels for positive relevance scores for

queries and documents, the models are trained to minimize the distance between queries

and their relevant documents [28]

While it is common practice to initialize the query encoder and document encoder with

1236912

0

−10

−20

−30

Query Encoder Layers

Im
p

ac
t

to
R

et
ri

ev
al

A
cc

u
ra

cy
Encoder layers Vs. Impact on Retrieval Accuracy

12 document layers
9 document layers
6 document layers
3 document layers
2 document layers
1 document layer

Figure 4.2: Measuring the impact on recall at 20 on the NQ retrieval dataset by varying
the number of transformer layers for the query encoder and document encoder

identical language models, this ignores the cost asymmetry of the usage patterns. The doc-

ument encoder is usually only used once during a large-scale batch generation of the index.

Index generation happens in a latency-insensitive environment and can easily leverage many

GPUs and large batch sizes to improve efficiency.

The query encoder runs every time a user issues a query, which can be irregular and sporad-

ically. The query encoder responds to each user query independently. Thus, query encoders

often use a batch size of 1 and commonly leverage small inference-optimized hardware like

the T4 GPU or small CPUs.

Since the document encoder does not run very often, any improvement in latency produces

a single fixed gain utterly dependent on the corpus size and index refresh cycle. The query

encoder’s user-facing nature means latency improvements occur whenever a user queries.

63

4.2.4 Role of Model Symmetry With Bi-Encoders

The variation in latency sensitivity between the query and document encoder leads to the

question: Is there some form of asymmetry between the query encoder and the document

encoder that can be exploited? Do the two encoders need to be compressed symmetrically?

To answer this question, we explore the impact on the performance of pruning the query

and document encoders on the NQ passage retrieval dataset [165]. Using a BERT-base

uncased model with 12 transformer encoder layers, we generate structurally pruned models

with 9,6,3,2 and 1 layer. We also further pre-train the three and six-layer models using

knowledge distillation, represented as 6KD and 3KD, from a 12-layer model on the Wikipedia-

book corpus similar to distilBERT [114].

Then, using each of these seven models, we train dense retrieval models on the NQ passage

retrieval dataset with variations of query and document models resulting in 72 variants.

With each of these models, we generate a full index and evaluate retrieval performance on the

development portion of the dataset. We do not tune any parameters to avoid overfitting and

to explore asymmetry without overoptimizing. Each model’s retrieval accuracy is evaluated

with depth 20, 100, and 200 retrieval sets. We compare the impact of varying the encoders

to the uncompressed baseline and a distilBERT model (denoted by 6db).

Looking at the impact of symmetric compression as shown in table 4.1, we see that the

Layers enc Top 20 Impact Top 100 Impact Top 200 Impact
12 79.86% 0.00% 85.84% 0.00% 88.42% 0.00%
6db 73.88% -7.49% 84.74% -1.29% 87.26% -1.31%
9 73.41% -8.08% 83.68% -2.51% 86.51% -2.16%
6KD 75.04% -8.08% 85.15% -0.80% 87.45% -1.10%
6 71.69% -8.08% 83.30% -2.96% 86.04% -2.69%
3KD 73.32% -8.08% 83.43% -2.80% 86.20% -2.51%
3 66.93% -16.20% 80.61% -6.09% 84.49% -4.45%
2 66.87% -16.27% 80.42% -6.32% 83.85% -5.17%
1 54.96% -31.18% 71.88% -16.26% 76.73% -13.22%

Table 4.1: Impact of Structural pruning before fine-tuning on Retrieval Accuracy on NQ
passage retrieval dataset

impact of compression is more pronounced with a small recall set as retrieval accuracy impact

at 20 is 3x that of 200. We also observe major accuracy gains by fine-tuning the pruned

model with a 4% gap for the 6-layer model and a 6% gap for the 3-layer model for recall at

20.

We find that the document encoder drives retrieval accuracy by looking at the results of

asymmetrical training in table 4.2. As shown in figure 4.2, retrieval accuracy is driven by

64

the document encoder following prior work showing performance out of domain depends on

the document encoder [166].

The size of the Document encoder sets the upper bound on a model’s performance as a

model with 12 layers in the query encoder and 9 in the document encoder performs worse

than one with the numbers flipped. The dominance of the document encoder is a logical

outcome, as the latent space for queries is simpler than the latent space for documents. As

a result, system performance is governed by how well the document encoder can generate

representations.

Similar results can be seen with the introduction of fine-tuned three and 6-layer models

as shown in B.1. Unsurprisingly, KD-optimized language models outperform non-distilled

models, and any asymmetrical variant that leverages a distilled model outperforms the un-

distilled variant. Without further optimization, a model with a distilled 3-layer query encoder

and a 12-layer document encoder will outperform a model with symmetrical 6-layer models

despite being 2x faster.

4.2.5 Inference Benchmarks

To evaluate the impact of structural pruning, we benchmark inference speeds of query

encoding while varying the number of transformer layers. We perform benchmarking using

an Intel Xeon Gold 6238R Processor and a T4 Nvidia GPU. For each model, we evaluate the

performance on encoding 6500 queries with a batch size of one and a max context length of

32. For CPU inference, we evaluate the performance of models using the ONNX library 22,

and for GPU inference, we evaluate native Pytorch inference. We repeat each run five times

to ensure consistency and report the mean. Summary statistics can be found in 4.3, and full

results, including percentile, standard deviation, and confidence intervals, can be found in

the appendix C.1.4.

4.2.6 KL Alignment of Embeddings

While training asymmetric models can improve latency, it requires novel training regimes

and experimentation, and existing workloads need to regenerate their entire index to take

advantage of any inference speedups. Generation of the passage index can take longer than

model training [28], which makes regenerating a new index and retraining a model to meet

22https://onnx.ai/

65

layersq layersd Top 20 Impact Top 100 Impact Top 200 Impact
12 12 79.86% 0.00% 85.84% 0.00% 88.42% 0.00%

9 12 74.27% -7.00% 84.40% -1.67% 86.95% -1.66%
6 12 73.63% -7.80% 84.27% -1.83% 86.79% -1.85%
3 12 69.83% -12.55% 82.58% -3.80% 85.35% -3.48%
2 12 69.67% -12.76% 82.19% -4.25% 84.68% -4.23%
1 12 59.00% -26.12% 75.37% -12.19% 81.00% -8.39%

12 9 74.21% -7.07% 84.40% -1.67% 87.06% -1.53%
9 9 73.41% -8.08% 83.68% -2.51% 86.51% -2.16%
6 9 71.63% -10.30% 83.05% -3.25% 85.98% -2.76%
3 9 67.89% -14.98% 80.94% -5.71% 84.79% -4.10%
2 9 67.15% -15.92% 80.53% -6.19% 83.66% -5.39%
1 9 56.04% -29.83% 73.35% -14.55% 78.12% -11.65%

12 6 72.22% -9.57% 83.41% -2.83% 85.84% -2.91%
9 6 71.61% -10.33% 83.30% -2.96% 85.93% -2.82%
6 6 71.69% -10.23% 83.30% -2.96% 86.04% -2.69%
3 6 66.93% -16.20% 80.28% -6.48% 83.96% -5.04%
2 6 66.12% -17.20% 80.33% -6.42% 83.49% -5.58%
1 6 59.53% -25.46% 75.37% -12.19% 79.83% -9.71%

12 3 70.36% -11.90% 81.72% -4.80% 84.60% -4.32%
9 3 68.67% -14.01% 80.47% -6.25% 84.46% -4.48%
6 3 67.92% -14.95% 80.06% -6.74% 83.85% -5.17%
3 3 66.93% -16.20% 80.61% -6.09% 84.49% -4.45%
2 3 63.30% -20.74% 78.37% -8.71% 83.02% -6.11%
1 3 59.53% -25.46% 75.68% -11.84% 80.08% -9.43%

12 2 69.56% -12.90% 81.33% -5.25% 84.49% -4.45%
9 2 67.92% -14.95% 80.75% -5.93% 84.32% -4.64%
6 2 67.53% -15.43% 80.33% -6.42% 83.82% -5.20%
3 2 66.90% -16.23% 80.36% -6.38% 84.24% -4.73%
2 2 66.87% -16.27% 80.42% -6.32% 83.85% -5.17%
1 2 60.06% -24.80% 75.29% -12.29% 79.75% -9.80%

12 1 57.40% -28.13% 73.24% -14.68% 78.56% -11.15%
9 1 57.51% -27.99% 73.24% -14.68% 77.87% -11.94%
6 1 57.26% -28.30% 73.52% -14.35% 78.34% -11.40%
3 1 57.04% -28.58% 73.93% -13.87% 78.39% -11.34%
2 1 56.57% -29.17% 73.71% -14.13% 77.98% -11.81%
1 1 54.96% -31.18% 71.88% -16.26% 76.73% -13.22%

Table 4.2: Impact of Structural pruning before fine-tuning on Retrieval Accuracy on NQ
passage retrieval dataset

changing latency requirements an inefficient experimentation pathway.

Moreover, coupling asymmetry into training makes generating query encoder variants more

difficult, as each encoder requires its own index and document encoder.

Motivated by this bottleneck, we introduce Kullback-Leibler Allingment of Embeddings

(KALE), a simple method of improving bi-encoder latency by aligning the embeddings of

compressed models. KALE is applied after model training and leverages large batch sizes to

66

layers size compressed size method QPS Speedup
12 418 387 GPU 105.852 1.00
9 337 212 GPU 139.494 1.32
6 256 236 GPU 172.338 1.63
3 175 161 GPU 299.45 2.83
2 148 136 GPU 441.422 4.17
1 121 111 GPU 660.64 6.24
12 418 387 CPU 47.278 1.00
9 337 212 CPU 63.24 1.34
6 256 236 CPU 90.386 1.91
3 175 161 CPU 166.012 3.51
2 148 136 CPU 229.666 4.86
1 121 111 CPU 378.534 8.01

Table 4.3: Variation in model throughput according to the serving method and the number
of transformer layers. Structural pruning can lead to a six and 8-layer performance
increase on GPU and CPU, and pruning a model to 3 layers allows a CPU to offer better
inference performance than the GPU.

Layers KALE NQ TriviaQA MSMARCO SCIFACT SQUAD
12 N/A 85.84% 85.84% 88.77% 90.70% 77.16%
9 N 79.97% 79.97% 82.01% 71.07% 71.38%
9 Y 84.90% 84.90% 86.16% 84.87% 73.54%
6 N 68.20% 68.20% 72.68% 22.98% 59.97%
6 Y 83.68% 83.68% 84.68% 85.13% 69.87%
3 N 43.88% 43.88% 11.39% 40.80% 34.42%
3 Y 81.14% 81.14% 82.11% 82.57% 64.37%
2 N 46.90% 46.90% 31.46% 42.66% 37.01%
2 Y 81.94% 81.94% 81.96% 82.57% 63.72%
1 N 12.22% 12.22% 0.00% 3.17% 11.66%
1 Y 71.33% 71.33% 54.36% 66.83% 51.39%

Table 4.4: Impact of structural pruning with and without KALE on Accuracy at 100
across various datasets.

make compression computationally inexpensive and independent of training. A single V100

GPU KALE can produce a compressed query encoder in less than 5 minutes.

First, a bi-encoder model trains with separate query and document encoders. When training

is complete, the document encoder, edocument, is frozen, and using the query encoder, eq, a

structurally pruned copy, eq′ , is made. Then, using a sample of queries, the eq′ model is fine-

tuned to minimize the KL divergence of their query representations as shown in equation 4.2.

DKL(eq′ ∥ eq) =
∑
x∈X

eq′(x) log

(
eq′(x)

eq(x)

)
. (4.2)

67

We explored the use of various distance functions such as cosine similarity, Manhattan dis-

tance, and the KL divergence but found little sensitivity in any metric besides KL divergence.

We believe this is due to us freezing the document representations, and as a result, cosine

distance allows the query embeddings to drift more than probability distribution matching

methods. To explore this further, we experiment with tuning the temperature for the KL

divergence and add a loss scaling factor but find a temperature of one and a scaling factor

of ten to be most optimal.

Additionally, we explored using a contrastive loss with random negative and hard negatives

mined from the trained encoder but found no positive impact for either method. We leave

further exploration of training objective improvement for future work.

4.2.7 Experimental Results

We evaluate the effectiveness of KALE by taking uncompressed BERTBASE models and

pruning them with and without KALE on various well-established passage retrieval bench-

marks. First, models are trained, and indexes are generated using un-optimized BERTBASE

models. Next, the document encoders are frozen, and the query encoders are structurally

pruned to have 9,6,3,2, or 1 transformer layer. Finally, query encoders are aligned using

KALE, and we compare the performance of compressed models by comparing the Impact

on retrieval accuracy at 20,100, and 200.

To aid reproducibility, each model is trained using the Tevatron [167] 23 library, which makes

use of hugginface’s transformers to provide a simple interface for exploring neural ranking

models. Our experiments focus on the plain BERTBASE-uncased 12-layer transformer model.

While never more capable models exist, the unaltered BERT model is widely used in pro-

duction workloads, which our experiments seek to emulate.

Our work aims not to produce the highest possible retrieval accuracy for a dense encoder. In-

stead, our goal is to find the role of asymmetry in bi-encoder models. As a result, we leverage

the well-established parameters in all of our experiments without using an advanced method-

ology like contrastive or curriculum learning.

There are fewer parameters for using KALE, and we deliberately do not optimize on any-

thing but the loss between eq and eq′ . In general, higher degrees of pruning require longer

training with smaller batches.

Datasets We use a wide variety of standard dense retrieval benchmarks, including MS-

23https://github.com/texttron/tevatron

68

1236912

−10

−20

−30

−40

−50

−60

−70

−80

−90

Query Encoder Layers

Im
p

ac
t

to
R

et
ri

ev
al

A
cc

u
ra

cy

Query Encoder layers Vs. Impact on Retrieval Accuracy on NQ

BERTBASE @20
BERTBASE with KALE @20

BERTBASE @100
BERTBASE with KALE @100

BERTBASE @200
BERTBASE with KALE @200

Figure 4.3: Impact of structural pruning with and without KALE on the NQ Passage
Retrieval dataset with the recall set sizes of 20,100, and 200. Across datasets, we see a
consistent trend where KALE is effective but most effective when the network is heavily
pruned and recall set sizes are small. When the model is pruned to 2 or 1 layer with a
recall set size of 20, the difference between using KALE or not can be up to 10 times the
loss in recall accuracy

MARCO V1.1 24 [168], NQ Passage Ranking 25 [165], SciFact Passage Ranking 26 [169],

TriviaQA passage Ranking 27 [170], and SQUAD Passage Ranking 28 [156].

For each dataset, we evaluate performance by measuring the recall accuracy with re-

trieval depths of 20,100, and 200. Additionally, for the MSMARCO dataset, we also report

MRR@10; for Scifact, we also report NDCG @10 and RR@10.

Computational Experiments Our experimentation on fine-tuning our compressed mod-

els uses a 16 GB V100 GPU. Experiments in bi-encoder model training leverage 1 V100 for

the MSMARCO and 4 for each other experiment. Due to the vast number of models and

datasets we train on, each experiment happens with the same fixed seed.

69

1236912

−10

−20

−30

−40

−50

−60

−70

−80

−90

Query Encoder Layers

Im
p

ac
t

to
R

et
ri

ev
al

A
cc

u
ra

cy

Query Encoder layers Vs. Impact to Retrieval Accuracy on TriviaQA

BERTBASE @20
BERTBASE with KALE @20

BERTBASE @100
BERTBASE with KALE @100

BERTBASE @200
BERTBASE with KALE @200

Figure 4.4: Impact of structural pruning with and without KALE on the TriviaQA Passage
Retrieval dataset with the recall set sizes of 20,100, and 200. Across datasets, we see a
consistent trend where KALE is effective but most effective when the network is heavily
pruned and recall set sizes are small. When the model is pruned to 2 or 1 layer with a
recall set size of 20, the difference between using KALE or not can be up to 10 times the
loss in recall accuracy

4.2.8 Discussion

Evaluating KALE We compare the performance of using KALE for post-training com-

pression in figure 4.7 across the five datasets and see a fairly consistent trend. When the

recall set is small, and the query encoders are pruned to a high degree, the impact of KALE

is most visible, often driving over 50 improvements in retrieval accuracy. Additionally, using

KALE allows the models to have a steady and gradual drop in recall accuracy relative to

speedup instead of the sharp drop shown by the regular usage of structural pruning. With-

out KALE, post-training compression causes a 20-50% loss in retrieval accuracy. With the

use of KALE, these losses are cut to 1-10%. In practice, this allows using one or 2-layer

encoder models running with CPU-based inference with minor impacts on accuracy.

We also notice a surprising performance improvement between 3 and 2-layer query encoders

with and without KALE. This shows the phenomena studied elsewhere: the first and last

layers do most of the work [171].

24https://huggingface.co/datasets/Tevatron/msmarco-passage
25https://huggingface.co/datasets/Tevatron/wikipedia-nq
26https://huggingface.co/datasets/Tevatron/scifact
27https://huggingface.co/datasets/Tevatron/wikipedia-trivia
28https://huggingface.co/datasets/Tevatron/wikipedia-squad

70

1236912

−10

−20

−30

−40

−50

−60

−70

−80

−90

Query Encoder Layers

Im
p

ac
t

to
R

et
ri

ev
al

A
cc

u
ra

cy

Query Encoder layers Vs. Impact to Retrieval Accuracy on MSMARCO

BERTBASE @20
BERTBASE with KALE @20

BERTBASE @100
BERTBASE with KALE @100

BERTBASE @200
BERTBASE with KALE @200

Figure 4.5: Impact of structural pruning with and without KALE on the MSMARCO
Passage Retrieval dataset with the recall set sizes of 20,100, and 200. Across datasets, we
see a consistent trend where KALE is effective but most effective when the network is
heavily pruned and recall set sizes are small. When the model is pruned to 2 or 1 layer
with a recall set size of 20, the difference between using KALE or not can be up to 10
times the loss in recall accuracy

Model Layers KALE MSMARCO NQ TriviaQA SQUAD SCIFACTS
BERTBASE 12 N 88.77% 85.84% 85.03% 77.16% 90.70%

BERTBASE 6 Y 84.68% 83.68% 83.01% 69.87% 85.13%
6kd − 6kd 6 N 88.19% 85.15% 84.96% 71.94% 91.23%
6db − 6db 6 N 88.35% 84.74% 84.83% 71.69% 89.37%
6kd − 3kd 6 N 86.50% 85.37% 84.04% 70.89% 89.20%

BERTBASE 3 Y 82.11% 81.14% 81.67% 64.37% 82.57%
3kd − 3kd 3 N 86.13% 83.66% 84.11% 71.98% 89.40%
3kd − 6kd 3 N 84.79% 85.76% 83.91% 67.85% 88.63%
6kd − 3kd 3 Y 82.95% 83.43% 82.33% 63.77% 90.37%
6kd − 6kd 3 Y 86.75% 80.78% 83.48% 64.14% 91.70%

BERTBASE 2 Y 81.96% 81.94% 81.23% 67.00% 82.57%
3kd − 3kd 2 Y 84.23% 82.71% 83.02% 67.02% 91.33%
3kd − 6kd 2 Y 85.57% 84.27% 82.90% 62.75% 88.37%
6kd − 3kd 2 Y 83.24% 83.02% 82.13% 62.52% 89.93%
6kd − 6kd 2 Y 85.77% 80.39% 83.32% 52.74% 91.93%

BERTBASE 1 Y 48.05% 71.33% 75.40% 51.39% 66.83%
3kd − 3kd 1 Y 66.69% 77.17% 80.82% 55.62% 76.03%
3kd − 6kd 1 Y 72.13% 79.81% 80.23% 52.26% 78.67%
6kd − 3kd 1 Y 71.26% 76.57% 78.65% 50.88% 77.07%
6kd − 6kd 1 Y 70.70% 74.71% 80.31% 52.74% 77.89%

Table 4.5: Impact of model asymmetry and use of KALE for structural pruning on the
Retrieval at 100 accuracies across various datasets.

71

1236912

−10

−20

−30

−40

−50

−60

−70

−80

−90

Query Encoder Layers

Im
p

ac
t

to
R

et
ri

ev
al

A
cc

u
ra

cy

Query Encoder layers Vs. Impact on Retrieval Accuracy on SCIFACT

BERTBASE @20
BERTBASE with KALE @20

BERTBASE @100
BERTBASE with KALE @100

BERTBASE @200
BERTBASE with KALE @200

Figure 4.6: Impact of structural pruning with and without KALE on SciFACT, Passage
Retrieval dataset with the recall set sizes of 20,100, and 200. Across datasets, we see a
consistent trend where KALE is effective but most effective when the network is heavily
pruned and recall set sizes are small. When the model is pruned to 2 or 1 layer with a
recall set size of 20, the difference between using KALE or not can be up to 10 times the
loss in recall accuracy

Aiding Asymmetry with KALE Seeking to optimize compression further, we combine

KALE with asymmetrical finetuning and evaluate the results similarly to our earlier exper-

iments. Results on the impact of KALE and asymmetry on the five datasets on the recall

accuracy at 100 can be found in table 4.5 where 3kd−6kd denotes a three-layer query encoder

and six-layer document encoder, 3kd − 3kd denotes dual three layer encoders. Full results

and metrics for each task can be found in the appendix section B.1.4.

First, it is immediately observable that post-training compression via KALE performs worse

than models natively designed for that size. We believe this is due to the convergence of the

KALE models to have some distance from the uncompressed model because of dropout. We

experimented with not using dropout in KALE, but model performance quickly suffered.

Looking at the best retrieval accuracy vs. the model speedups shown in figure 4.8, we can see

a substantial variation in the impact of compression across datasets. In tasks like SCIfacts,

it is possible to get over 4x speedup while improving accuracy, while on tasks like SQuAD,

even minor speedups lead to major losses in accuracy. We believe this variation is driven by

the relative difficulty of each dataset, where easier tasks are more compressible than harder

tasks.

We believe these variations in results highlight the utility of post-training compression meth-

72

1236912

−10

−20

−30

−40

−50

−60

−70

−80

−90

Query Encoder Layers

Im
p

ac
t

to
R

et
ri

ev
al

A
cc

u
ra

cy

Query Encoder layers Vs. Impact on Retrieval Accuracy on SQUAD

BERTBASE @20
BERTBASE with KALE @20

BERTBASE @100
BERTBASE with KALE @100

BERTBASE @200
BERTBASE with KALE @200

Figure 4.7: Impact of structural pruning with and without KALE on SQUAD, Passage
Retrieval dataset with the recall set sizes of 20,100, and 200. Across datasets, we see a
consistent trend where KALE is effective but most effective when the network is heavily
pruned and recall set sizes are small. When the model is pruned to 2 or 1 layer with a
recall set size of 20, the difference between using KALE or not can be up to 10 times the
loss in recall accuracy

100 200 300 400 500 600

60

70

80

90

Query Encoder Layers

R
et

ri
ev

al
A

cc
u

ra
cy

Inference Speed (GPU) Vs.Retrieval Accuracy @100

MSMARCO
NQ

TriviaQA
SQUAD
SCIfacts

Figure 4.8: The impact on retrieval accuracy of the best combinations of asymmetrical
training and KALE across the NQ, MSMARCO, TriviaQA, SQUAD, and SCIfacts
retrieval datasets

73

ods like KALE. Given the task variability in the impact of compression, iteration speed and

cost are essential to effectively tuning model inference speed and accuracy.

4.2.9 Conclusion and Future Work

In this work, we have demonstrated how the use of asymmetry between the query and

document encoders in bi-encoder models can be leveraged for improved inference efficiencies

across CPUs and GPUs. Using our post-training compression framework, KALE, we can

compress models up to 6x with little loss in accuracy. Compressing models without regener-

ating the document index or the document encoder makes it practical to have many query

encoders tailored to each use case’s latency needs.

In the future, we wish to study how asymmetry in retrieval can be implemented with models

which are widely different and may have different hidden sizes, such as using MiniLM for

the query model and RoBERTA-Large for the document model.

4.3 NOISE-ROBUST DENSE RETRIEVAL VIA CONTRASTIVE ALIGNMENT POST
TRAINING

4.3.1 Overview

The success of contextual word representations and advances in neural information re-

trieval have made dense vector-based retrieval a standard approach for passage and docu-

ment ranking. While effective and efficient, dual-encoders are brittle to variations in query

distributions and noisy queries. Data augmentation can make models more robust but in-

troduces overhead to training set generation and requires retraining and index regeneration.

We present Contrastive Alignment POst Training (CAPOT), a highly efficient finetuning

method that improves model robustness without requiring index regeneration, training set

optimization, or alteration. CAPOT enables robust retrieval by freezing the document en-

coder while the query encoder learns to align noisy queries with their unaltered root. We

evaluate CAPOT noisy variants of MSMARCO, Natural Questions, and Trivia QA pas-

sage retrieval, finding CAPOT has a similar impact as data augmentation with none of its

overhead.

74

Figure 4.9: To learn a align the representation of queries and their counterparts with noise,
a contrastive loss is used. Since the document encoder and its relative relation to the query
encoder are frozen, an anchoring vector keeps the aligned encoder from drifting from its
original learned representation.

4.3.2 Introduction

Contextual language representations derived from Large Language Models (LLM) have

led to impressive improvements in performance across many tasks in natural language pro-

cessing, such as sentiment analysis, topic detection, and question answering.

In information retrieval, LLM based cross encoders and bi-encoder models have led to major

improvements in relevance on benchmarking datasets like MSMARCO [172] and Natural

Questions [165] and have been adopted as common backbones for many industrial deploy-

ments in search. Unlike traditional term-based search, contextual representations excel at

semantic search, which can improve relevance as it matches intent instead of keywords.

While neural methods excel on well-formulated academic benchmarks, performance falters

when faced with domain shifts or queries with misspellings or typos. On recent benchmarks

like BEIR [89], cross-encoders are more robust to shifts in domain than bi-encoders.

When looking at queries with some noise like typos and misspellings, the same holds [173].

Despite their superior performance on noisy queries and domain shifts, cross-encoder infer-

ence requirements make them too expensive to use at scale.

To avoid inference inefficiency of cross-encoder, bi-encoders have emerged as a popular

method for retrieval, particularly for candidate generation in multi-stage ranking systems.

Bi-encoders leverage query and document models trained to match their representations in

75

a latent space. Since document representations are query independent, they only need to be

generated once, and the inference load is limited to a single run of the query encoder.

Research on bi-encoder has been driven by the availability of large training datasets such

as MSMARCO [168], Natural Questions (NQ)[165], and Trivia QA (TQA) [170]. These

datasets have allowed deep explorations on how to improve training procedure [31], decrease

index size [98], and model efficiency [174]. Despite the tremendous success, these neural

methods models are brittle to subtle search domain shifts and minor query formulation vari-

ations[175].

While there has been plenty of work that has shown how neural methods are not robust

to typos [175] [176] [177] [33] [173] all approaches which improve performance either re-

quire a new optimized general model such as CharBERT [178] or require retraining with

data augmentation [173]. While effective, both approaches introduce a sizable overhead in

dataset generation and augmentation or language model pre-training. Moreover, despite the

effectiveness of these two techniques, further study is required to understand the interplay

between data augmentation and curriculum learning [179] and topic-aware sampling [180].

Seeking to improve the performance of the query encoder on noisy queries with high effi-

Noising Function Alteration Type Original Alteration

Determiner Syntactic who sang waiting for a girl like you who sang waiting a a girl like you

Synonym Semantic
Which was the first European country to

abolish capital punishment?
Which was the first European country
to abolish majuscule punishment?

Lemmatize Syntactic who plays young dr mallard on ncis who play young dr mallard on ncis

Stemming Syntactic who recorded the song still the one? who record the song still the one?

Random Character Swap (RCS) Surface big little lies season 2 how many episodes big litt e lies season 2 how many episodes

Keyboard Character Swap (KCS) Surface when did veterans day start being called veterans day when djid veterans day start being called veterans day

Character Delete (CD) Surface when did big air snowboarding become an olympic sport when did big air snowboarding become an olympic sort

Reorder Word (RW) Surface who is the main character in green eggs and ham who is the main character and green eggs in ham

Back-Translation (BT) Semantic what is project charter in project management What is a project charter in project management

Paraphrasing Semantic turkey and china time difference
Time difference between Turkey and China in the middle

of the night, depending on the time difference.

Table 4.6: Example of the forms of query noise that we leverage to evaluate how robust
bi-encoders are to noise.

ciency possible, we introduce Constrastive Allignment POst Training (CAPOT). To avoid

complicated dual encoder training regimes, CAPOT assumes that the document encoder and

index are immutable and learn an improved query representation without altering existing

relations to the index.

As shown in figure 4.9, CAPOT uses a traditional contrastive loss [96] where queries with

noise (positive samples) should be closer to the anchor (query without noise) than unrelated

queries. Unlike a traditional contrastive loss, CAPOT introduces a notion of an anchoring

loss between the unaltered model and the aligned model. As the model learns to group noisy

queries with their unaltered roots, we also constrain its ability to alter the representation

aligned with the unaltered document encoder.

The main contributions of our work are as follows:

76

• We introduce CAPOT, a highly efficient fine-tuning method for improving performance

on noisy queries without retraining a model or index regeneration.

• We demonstrate that CAPOT is incredibly effective at making the encoder robust,

particularly with typos. Using CAPOT approximates the impact of data augmentation

without the associated computational overhead.

• We demonstrate that CAPOT is robust enough to prove functional with completely

unsupervised data. Using the ORCAS dataset, CAPOT can improve performance

without access to the query training distribution.

4.3.3 Generating Noisy Queries

While previous work has studied the impact of minor variations to queries, such as typos

and misspellings, query noise is much more diverse. Seeking to expand this understanding,

we explore the impact of query alterations that evaluate surface, syntactic, and semantic

alterations. To apply noise to a query, we either edit a query to introduce a specific type of

noise or rewrite the query to simulate similarly worded intents. Each query that is altered

has a notion of its anchor, either a character, word or a group of words, which is selected

where noise is applied. To achieve this for each query, a character or word index is randomly

selected. Then, noise is applied to the left, right, or at the noising index (replacing the

existing index) with equal probability. Example alterations are in table 4.6.

To study the impact of surface-level alterations, we introduce noise in queries by simulating

misspellings and typos by swapping, eliminating, or shuffling characters in a query. To un-

derstand how models respond to typos or character omissions, we delete a character (DC),

inject a random character (RCS), or simulate a keyboard-based typo by injecting a character

close to its neighbor on a keyboard (KCS). We swap the indexed word with another word in

the query to understand how systems may work when faced with natural shifts in keyword

queries.

To study syntactic alterations, we introduce noise that alters the syntax of the query intro-

ducing lemmas, stems, synonyms, and determiners using tools from the NLTK toolkit [181].

Synonyms are introduced using NLTK’s interface with WordNet [182], and exact synonyms

for a single word are introduced. Determiners, affixes that occur with nouns and commonly

are not discriminative for search, are introduced similarly to typos to the left or right of

noun phrases. Lemma’s return words to their canonical root while stemming reduced word

inflection using the Porter-stemmer. We select up to five words per query to attempt stem-

ming/lemmatization, but many queries do not have any words which can be stemmed or

77

lemmatized versions and, as a result, are un-noised.

Exploring semantically similar queries, we leverage paraphrasing, back-translation, and syn-

onyms. To paraphrase, we rewrite queries using a T5 [11] sequence-to-sequence model, which

has been fine-tuned on the PAWS [183] dataset. For back-translation, we use OpenNMT’s

[184] to translate queries from English to another language and then back to English after

exploring performance using German, French, Italian, and Spanish to find the German to

have the best quality and use only those. It is worth noting that these semantic noising

methods are the most likely to alter the true query intent, as seen by the ’hallucinations’ in

table 4.6 paraphrase alteration.

Using the aforementioned noising approaches, we noise the queries on the MSMARCO [168]
29 30, Natural Questions 31 32 [165], and the Trivia QA [170] 33 Passage Ranking datasets.

4.3.4 Baseline Performance

20 100 200
50

60

70

80

90

95

Recall Set Size

R
ec

al
l

A
cc

u
ra

cy

Bi-encoder Recall Accuracy by Recall Set size

NQ
NQ w/noise
MSMARCO

MSMARCO w/noise
TriviaQA

TriviaQA w/noise

Figure 4.10: Bi-encoder recall accuracy on noisy and non-noisy queries with variations of
recall set size and datasets.

In production workloads, bi-encoders are most commonly used for early retrieval. The

29https://huggingface.co/datasets/spacemanidol/msmarco-passage-query-variation
30https://huggingface.co/datasets/spacemanidol/rewrite-noisy-queries
31https://huggingface.co/datasets/spacemanidol/wikipedia-nq-query-variation
32https://huggingface.co/datasets/spacemanidol/nq-noising
33https://huggingface.co/datasets/spacemanidol/wikipedia-trivia-query-variation

78

sets they produce are then reranked using a cross-re-ranked Given cross-encoder are more

robust to typos [33], our work focuses exclusively on evaluating the impact of noise on the

retrieval accuracy of bi-encoders.

To do so, we train a series of task-specific bi-encoders leveraging the open-source bi-encoder-

focused library Tevatron [167] with task-specific training parameters found in B.26 on the

widely used and studied MSMARCO [168], Natural Questions (NQ) [165] and TriviaQA

[170] passage retrieval datasets.

For contextual representations, each encoder uses a pre-trained BERT [9] model for its ini-

tialization, and we use separate models for the query and document models. Representations

are taken from the unaltered 768-dimension vectors based on the last hidden representation

of the CLS token.

For each dataset, we train each model using five different random seeds with fixed optimal

hyperparameters, generate seed and task-specific indexes and evaluate the retrieval impact

of queries with noise and unaltered routes. We evaluate the impact on retrieval by measuring

the impact on retrieval accuracy at k with a k = 20, 100, 200.

As shown in figure 4.10 on the impact of averaged noise, our experimental results align with

prior research. There is a wide variation of impact as the long, trivia-inspired queries of

Trivia QA see minor losses in accuracy compared to the real-world web search queries of

MSMARCO, up to 12% the impact. Besides the impact of query type, we also notice the

large role recall set size plays on the relative degradation in retrieval accuracy. Across tasks

and datasets, increasing the recall set from 20 to 200 decreases the impact on accuracy by

about 50%.

Focusing on the impacts of individual types of noise shown in B.2.2, we see that queries with

surface alteration, such as typos, see the largest loss. Despite featuring real-world search

engine queries with noise, on MSMARCO, there is nearly a 30% loss in retrieval accuracy for

queries with typos, dropping from 71% to 41%. On all datasets, queries with character-level

alterations see a 50% average higher loss in accuracy than other alterations. This large gap

can be attributed to the vocabulary construction method of BERT and BERT-like models,

where a minor alteration to a single character can produce large variations in tokenization.

In the absence of model optimization, data augmentation, or post-training optimization, the

clearest way to make dense retrieval robust to noise is to expand the recall set and allow

cross-encoders to re-rank the expanded results.

79

4.3.5 Incorporating Noise By Aligning Representations

c(x, x
+, x−) =

∑
x∈X

max(0, ∥ f(x)− f(x+) ∥22 − ∥ f(x)− f(x−) ∥22 +ϵ) (4.3)

a(x) =
∑
x∈X

max(0, ∥ f(x)− fa(x) ∥22 +ϵa) (4.4)

r(x
+, x−) =

∑
x∈X

max(0,−y ∗ (f(x+)− f(−x) + ϵr) (4.5)

CAPOT (x, x
+, x−) =

∑
x∈X

τc ∗c +τa ∗a +τr∗r (4.6)

4.3.6 Motivation

A robust query encoder seeks to represent queries with a shared intent in a common

latent space such that minor variations in the formulation of the intent lead to similar doc-

ument ranking. Prior work has shown that data augmentation and typo-optimized models

increase model robustness, but it is not without cost.

Data augmentation requires changes to existing training methodologies and complete regen-

eration of the passage index. Given that the generation of the passage index can take longer

than it does to train the model [28] regenerating a new index and retraining a model every

time a novel form of noise is discovered is not tractable. Optimized pre-trained models can

provide effective modeling solutions. However, given the rapid iteration pace of pretrained

language models, making typo-aware variants for each new advance is hard to scale.

Motivated to improve performance without altering the underlying pretrained model or

the bi-encoder training regime, we introduce CAPOT, a new methodology for increasing

model robustness which is computationally inexpensive and independent of training.

CAPOT works well because it can focus on improving the query encoder and leverages the

short nature of queries to scale to large batch sizes.

4.3.7 CAPOT

Contrastive Alligment Post Training (CAPOT) is an expansion on traditional con-

trastive learning focused on making dual encoders robust to noise. The goal of CAPOT is to

allow representations of noisy queries to be close to their original on the traditional triplet

contrastive loss [96] in 4.3, where f is a query encoder, x is the original query, x+ is a query

80

where noise has been introduced, and x− is a negative query selected at random 34. We

modify 4.3 to scale the role of positive and negative samples using term specific inτpositive

and τnegative parameters.

While 4.3 allows the query-encoder to represent queries and noisy queries in a similar la-

tent space, it has the unwanted side effect of query representation drifting related to the

learned notion of relevance. Without controlling for this drift, a complete collapse in rank-

ing accuracy came at the expense of effective representation of noisy samples. To avoid this,

we introduce an anchoring term,4.4, that minimizes the drift between learning a notion of

relevance and shared embeddings for queries with noise where f is the noise-robust query-

encoder, and fa is a copy of the unaltered frozen query-encoder, optimized for an existing

document encoder and document index.

Seeking to improve performance further, we add a ranking loss as shown in 4.5 between the

anchored model fa and f where the model learns that f(x+) always ranks higher than fa(x).

While this loss component is not crucial, we can leverage this to improve model performance

slightly. 4.3,4.4 and 4.5 are combined to form the CAPOT, 4.6.

4.3.8 Experimental Approach

To qualify the effectiveness, we explore how alignment can improve performance on noisy

queries before and after bi-encoder training and compare them to data augmentation. We

then compare the performance of the aligned models with unaltered baselines and mod-

els trained with DA. Except for models aligned with CAPOT, each experiment requires a

complete training run and index generation, which can be quite slow. Each experiment is

performed across 5 seeds, and we use the same evaluation metrics previously discussed and

report the mean performance over five seeds.

To quantify the ability of post-training alignment, we take the converged baseline models

and apply CAPOT to align the model on the training portion of the query set. Once aligned,

a model is retrieved on the unaligned, fixed document index generated during our baseline

experimentation. Since queries are short and batch sizes can be scaled easily, it’s important

to note how fast this is. A single 2080ti NVIDIA GPU using CAPOT takes under 60 minutes

on the NQ dataset.

To explore if alignment can happen before training, we leverage the ORCAS [185] dataset

to generate a corpus of 10 million queries. Using these queries, we create positive and neg-

ative noisy samples using the same noising approach discussed in 4.3.3 making a dataset of

34We explore the usage of hard negatives mined from nearby query representation but did not find any
measurable impact

81

100 million queries called Noisy-ORCAS 35. Using these 100m queries, we align the repre-

sentation of queries and their noisy counterparts using a BERT-base model optimized for

masked-language modeling. Given the scale of this dataset, We train for a single epoch on

the Noisy-ORCAS corpus using the τpositive = 1.0,τnegative = 0.1,and τanchor = 1.0 on 4 V100

GPUs with a batch size of 2048. Then, we leverage this optimized model to initialize our

unaltered bi-encoder model’s training procedure. Then, this model is trained on our datasets

and evaluated similarly to the baseline. We refer to models trained this way as(PT), and

each usage of PT requires retraining and index regeneration.

4.3.9 Experimental Results

20 100 200

−12

−10

−8

−6

−4

−2

Recall Set Size

L
os

s
in

A
cc

u
ra

cy

Relative Degradation in Retrieval vs. Recall Set size

Baseline
PT
DA

CAPOT

Figure 4.11: Average Relative loss in bi-encoder recall accuracy on NQ by recall set size
depth on the baseline, Pretrained Alignment (PT), Data Augmentation (DA), and
Contrastive Alignment Post Training (CAPOT) on noisy queries.

As shown in figures 4.11 and 4.12, using CAPOT can improve performance on queries

with noise, particularly typos. Moreover, the impact of CAPOT is similar to DA without a

training set alteration or index regeneration. CAPOT approach takes advantage of training

on only the query encoder and fixing the document encoder. Since queries tend to be short,

CAPOT uses a max sequence length of 28 tokens to minimize memory usage, allowing scaling

to batch sizes of 2048 on GPUs with 16 GBs. This large batch size means training is rapid

and effective. A complete alignment run on the NQ dataset takes one hour on a single V100

35https://huggingface.co/datasets/spacemanidol/CAPOT-queries

82

gpu. At the same time, data augmentation requires 26 hours for training and an additional

day for index generation (50 hours overall).

20 100 200
−16

−14

−12

−10

−8

−6

−4

−2

Recall Set Size

L
os

s
in

A
cc

u
ra

cy
Relative Degradation in Retrieval vs. Recall Set size

Baseline
PT
DA

CAPOT

Figure 4.12: Average Relative loss in bi-encoder recall accuracy on NQ by recall set size
depth on the baseline, Pretrained Alignment (PT), Data Augmentation (DA), and
Contrastive Alignment Post Training (CAPOT) on character-based noisy queries (typos).

Dataset Regular DA PT CAPOT
Depth 20 100 200 20 100 200 20 100 200 20 100 200
NQ -10.28% -5.07% -4.91% -4.95% -2.67% -2.76% -12.89% -7.05% -5.39% -5.95% -3.46% -2.94%
TriviaQA -4.90% -2.98% -2.24% -7.20% -4.44% -3.57% -11.89% -6.83% -5.34% -3.37% -1.68% -1.17%
MSMARCO -20.92% -33.91% -30.46% -43.98% -28.89% -16.73% -46.28% -36.41% -28.69% -22.76% -16.73% -14.48%

Table 4.7: Relative degradation in retrieval accuracy at 20,100,200 on NQ,TriviaQA, and
MSMARCO. Retrieval accuracy and relative loss across types of noise for unaltered
(Regular), Data Augmentation (DA), Pre Training Alignment (PT), and Post Training
Contrastive Alignment (CAPOT)

Dataset Regular DA PT CAPOT
Depth 20 100 200 20 100 200 20 100 200 20 100 200
NQ -14.96% -8.33% -7.27% -5.17% -2.39% -2.55% -15.74% -7.99% -6.57% -5.28% -2.86% -2.37%
TriviaQA -8.43% -4.56% -3.39% -7.71% -4.44% -3.64% -14.64% -8.28% -5.47% -3.39% -1.42% -0.87%
MSMARCO -41.68% -33.91% -30.46% -43.98% -33.70% -28.69% -55.58% -45.47% -40.95% -24.58% -18.40% -15.95%

Table 4.8: Relative degradation in retrieval accuracy at 20,100,200 on NQ,TriviaQA, and
MSMARCO. Retrieval accuracy and relative loss across types of character alteration noise
(typos) for unaltered (Regular), Data Augmentation (DA), Pre Training Alignment (PT),
and Post Training Contrastive Alignment (CAPOT)

Looking at summary metrics in table 4.7 and 4.8, we can see that the use of pre-training

alignment is never optimal and always under-performs un unaltered network. We believe

83

this indicates the importance of introducing noise after training. If introduced prior, the

noise will likely be forgotten, hampering learning a proper, relevant representation.

4.4 EXPANDING CONTRASTIVE ALIGNMENT

Seeking to explore the impact of variations in alignment query distribution’s role, we

explore how well CAPOT works with an alignment dataset that differs from the evaluation.

To do so, we explore the impact of using the previously discussed Noisy-ORCAS dataset to

align noisy queries for TriviaQA. Given the differences in dataset size, we train for the same

number of optimization steps with the Noisy-Orcas data as we do with the regular data.

As shown in figure 4.13, using an unrelated dataset, ORCAS, provides a close approxima-

20 100 200
−5

−4

−3

−2

−1

Recall Set Size

L
os

s
in

A
cc

u
ra

cy

Relative Degradation in Retrieval vs. Recall Set size

Unaltered
CAPOT

CAPOT-ORCAS

Figure 4.13: Average Relative loss in bi-encoder recall accuracy on NQ by recall set size
depth on of unaltered,Contrastive Alignment Post Training (CAPOT) and Contrastive
Alignment Post Training (CAPOT) ORCAS on TriviaQA.

tion to using the true query distribution, but it does not always outperform the un-altered

baseline, indicated by the performance at 200. We believe this is expected as the true query

distribution is a factor in how the query vector manifold is optimized.

84

4.4.1 Discussion

CAPOT and typos When queries have typos, CAPOT is a computationally efficient

method of improving performance as the relative gap between unaltered and aligned is

greatest on alterations like character deletion, keyboard character replacement, and random

character replacement. We attribute this impact to the relative importance of our alignment

dataset’s character level alterations. Three out of the ten methods focus on learning align-

ments based around minor character shifts, and as a result, the performance optimizes there

to the detriment of other forms of noise. CAPOT is much less effective in improving the

relevance of minor syntactic shifts, such as lemmatization or stemming leading to marginal

improvements over the unaltered baselines. We attribute this to the already smaller gap on

syntactically altered queries, which on datasets such as TriviaQA have less than 2% impact.

CAPOT and Retrieval Set Depth demonstrates that CAPOT, like DA, sees the highest

impact when the recall set size is small. On the NQ, the gap between CAPOT and the

baseline at 20 is nearly 10% which narrows to 3% at 200.

Limitations of contrastive alignment While effective, contrastive alignment has a non-

negligible impact on the retrieval accuracy of unaltered queries. As shown in table B.40 on

non-noisy queries, data augmentation incurs no loss in accuracy, yet CAPOT incurs 2.5%.

This is a fundamental issue because the alignment of embeddings causes minor variations in

representations that have actual implications on retrieval accuracy. We believe that the use

of larger datasets could, such as the web search logs used by the Generic Intent Representa-

tion of query vectors [186], could improve this.

Poly Encoding using alignment-based optimization leads to novel retrieval methods which

allow for fixed index, constrained optimizations tailored to specific types of noise or defi-

ciencies in retrieval. Novel noise-optimized encoders can be deployed in parallel without

additional index generation. Given the prevalence of bi-encoders as candidate set genera-

tion tools, CAPOT, unlike Data Augmentation, can generate many targeted query encoder

variants which share a document representation. As shown in figure 4.14, instead of seeking

a single query encoder that learns all surface and semantic forms of query representations,

alignment approaches can create many encoders tuned to various goals.

4.4.2 Summary and Future Work

This work studies how to improve bi-encoder performance on noisy queries efficiently.

By extending the contrastive triplet loss with an anchoring loss, CAPOT can be used as an

approximation for data augmentation without the associated computational overhead. By

85

Figure 4.14: Proposed poly-encoder architecture using noise-targeted query encoders
optimized with CAPOT

avoiding retraining and alternating the training corpus, CAPOT can significantly improve

recall accuracy with 20 times less computational overhead.

In future work, we wish to study how representation alignment approaches can be used with

compression approaches such as distillation, pruning, and quantization.

4.5 CONCLUSION AND KEY TAKEAWAYS

In conclusion, in this chapter, we have explored the utility of representation alignment

for the compression and robustification of bi-encoders for information retrieval. Using spe-

cialized and general task formulations, we can improve the inference efficiency by up to 8x

and the performance on noisy queries by 4x with minor computational overhead. By align-

ing the representations, query encoders can be modified, improved, and compressed without

needing to regenerate document representations.

In our exploration of aligning dense retrievers, we find the following key takeaways:

Batch size matters. The maximum batch size often slows down training methods. Since

training representation systems in isolation focus models on more uniformity of inputs, mem-

86

ory utilization decreases, allowing batch sizes to scale. By scaling representation alignment

to batches of 2048, compression can take less than 5 minutes on a V100 GPU and be opti-

mized quickly.

Exploit model symmetry. In bi-encoder-based retrieval, some components are computer once

offline, while others are continually online. Using this asymmetry in inference costs and the

higher impact of compression of the document encoder allows for an asymmetric bi-encoder,

improving latency profiles and retrieval accuracies.

87

CHAPTER 5: SCALING MULTI-LINGUAL CLASSIFICATION AND
ABSTRACTIVE SUMMARIZATION TO WEB-SCALE WORKLOADS

5.1 OVERVIEW

As the use of large language models proliferates and use cases mature, there is a clear need

for improvements in inference efficiency. Model efficiency and accuracy improvements lead

to clear wide-scale deployments requiring fast and cost-effective inference. Building on the

previous few chapters, we combine many compression approaches we discussed with indus-

trial workloads with susceptible latency requirements. This chapter will discuss approaches

and challenges in speeding up multi-lingual multi-task classification and abstractive summa-

rization for production workloads.

First, we examine the role of multi-linguality and multiple tasks in compressing text classi-

fication workloads for experience management. While large, monolingual language models

will likely deliver impressive classification accuracy across languages and domains, execut-

ing inference and maintaining many monolingual models can be overly complex and cost

prohibitive. Using multi-task and multi-lingual models and quantization and knowledge dis-

tillation to deliver 44% cost reductions with minor losses in accuracy.

Next, we discuss asymmetry of sequence-to-sequence models and how asymmetrically struc-

tured pruning can be leveraged for significant improvements in inference speed with little

to no loss in accuracy. Using the Shrink Then Fine-tune (SFT) paradigm, we find that

pruning a sequence-to-sequence encoder leads to significant losses in summarization accu-

racy with minor inference efficiency gains. Conversely, decoder pruning leads to substantial

improvements in inference efficiency with negligible impacts on summarization accuracy.

5.2 COMPRESSING CROSS-LINGUAL MULTI-TASK MODELS AT QUALTRICS

5.2.1 Overview

Experience management is an emerging business area where organizations focus on under-

standing the feedback of customers and employees to improve their end-to-end experiences.

This results in a unique set of machine learning problems to help understand how people

feel, discover issues they care about, and find which actions need to be taken on data that

differ in content and distribution from traditional NLP domains. In this paper, we present a

case study of building text analysis applications that perform multiple classification tasks ef-

ficiently in 12 languages in the developing business area of experience management. To scale

88

Figure 5.1: Relationship between model speedup and relative degradation to performance
for multi-lingual multi-task classification.

up modern ML methods on experience data, we leverage cross-lingual and multi-task mod-

eling techniques to consolidate our models into a single deployment to avoid overhead. We

also use model compression and distillation to reduce overall inference latency and hardware

cost to the level acceptable for business needs while maintaining model prediction quality.

Our findings show that multi-task modeling improves performance for a subset of experi-

ence management tasks in XLM-R and mBert architectures. MiniLM achieved the best

compression/performance trade-off among the compressed architectures we explored. Our

case study demonstrates a speedup of up to 15.61x with 2.60% average task degradation (or

3.29x speedup with 1.71% degradation) and estimated savings of 44% over using the original

full-size model. These results demonstrate a successful scaling up of text classification for

the challenging new ML area for experience management.

5.2.2 Introduction

Experience management enables businesses and organizations to effectively adapt to ac-

tionable customer and employee feedback. Understanding and managing a customer or

89

employee experience requires analyzing a combination of survey questions, social media, and

other sources of experience data together to derive insight. Deriving insight requires effec-

tively predicting the feelings, emotions, and requested actions from feedback in a scalable

way. To accurately predict these insights, we leverage state-of-the-art pretrained language

models. However, many of the best pretrained models require significant resources to deploy

at scale. For example, the best-performing models for tasks such as semantic similarity of

sentences [187] can have hundreds of billions of parameters [188]. Even more pedestrian (in

terms of size) models such as BERT-base [189] can still be relatively expensive and latency-

prone for a typical business use case, especially without specialized hardware or accelerators.

Leveraging model compression is one way to achieve high prediction accuracy and scale-up.

While substantial literature on model compression exists, it cannot be easy to sort through

all the methods and evaluate them on a case-by-case basis. Our contribution is a specific

case study evaluation of model compression methods for Qualtrics models on experience

management data and its unique challenges. In this work, we are particularly interested in

building efficient text classifiers, a fundamental problem in the experience management do-

main. Indeed, unstructured data constitutes more than 80% of the experience management

data. As such, analyzing text data across dimensions such as sentiment, emotion, action-

ability, effort, intent, topic, urgency, and toxicity is one of the most foundational challenges

in this emerging space. We share details about what worked and did not, which can benefit

the industry as others adopt model compression in their organizations for their use cases.

This is particularly timely in our current market as many companies in emerging business

areas want to reduce costs. Model compression is an effective way to minimize ML inference

costs, both financially and environmentally.

Motivating Constraints: Engineering Overhead, Cost, Latency Our goal in pur-

suing this compression and consolidation work was to reduce overall model hosting costs

while preserving model quality. Two areas we are focused on are reducing the burden for

engineering support of hosting our new models in production and the direct cost and latency

of the models themselves.

Since we deploy and support our models in a microservices framework, each model lives

behind a specific model endpoint or service. Each model has a fixed cost for the base

capacity and a variable cost for the elastic ability. If we use single-task monolingual models,

this results in needing support in the production of a specific service-per-task language pair.

Similarly, for single-task NLP models, the encoder, which can account for 90+% of the

computation for classification models, must run for each task, regardless of how similar it is

between functions.

In contrast, a multi-task cross-lingual model consolidates this repetitive computation and

90

removes the instance hosting overhead for additional languages. For this reason, we focused

on the ability to support multiple tasks per model and a cross-lingual model.

In addition, by developing smaller models, we hope to achieve reduced latency for runtime

needs while reducing costs by providing flexibility to deploy on less costly hardware.

5.2.3 The Tension Between Model Consolidation and Compression

An exciting tension arises as we combine multiple models into a single multi-task cross-

lingual model and reduce the model’s size and capacity. While prior work has also looked at

these different facets of model consolidation and compression in isolation [114], [190]–[196],

in this work, we investigate how these approaches work together to consolidate and compress

a model, and how that impacts model performance on the target tasks.

We cannot analyze this tension for all NLP tasks in general, but here we present evi-

dence for understanding the trade-offs for specific cases relevant to work at our company.

These results can inform future theoretical work and more practical applications at other

organizations.

5.2.4 Cross-Lingual Multi-Task (XLMT) Model Compression Methods

As described above, we are motivated to consolidate task and language support into

a single cross-lingual multi-task (XLMT) model and ,simultaneously pursue a compressed

version of that model to reduce capacity and make the model faster and less expensive to

run.

5.2.5 Cross-lingual Modeling

There has been a strong movement towards multi-lingual and cross-lingual models. One

of the first multi-lingual BERT models was “multi-lingual BERT” (mBert), from [189],

which extended “monolingual BERT” by training across a dataset with multiple languages

represented. Cross-lingual modeling (XLM), presented in [197], further improved over multi-

lingual modeling by introducing additional cross-lingual pretraining tasks, and XLM-Roberta

(XLM-R) [198] developed a robust cross-lingual model using techniques from Roberta [199]

and showed better performance beyond previous multi-lingual and cross-lingual models.

This work shows results using the mBert and XLM-R pretrained models on which we

build our task-specific classifiers. In the original paper [198], the authors showed a decrease

in model performance as more and more languages were introduced. We explore the effect of

91

training on monolingual vs. cross-lingual settings and how it impacts our combined model

performance.

5.2.6 Multi-task Learning for NLP

Multi-task learning (MTL) can merge tasks into a single model and improve task per-

formance by sharing common layers. For instance, [200] proposed an architecture that

shares the same character embedding layer showing effective results for low-resource set-

tings. Other types of MTL include hierarchical architectures, such as [201] where separate

tasks are learned and combined using a final attenuation layer and [202] where the first task

output feeds into a second task in sequence. In this work, we explore how combining mul-

tiple tasks into a single cross-lingual model impacts performance on each task individually.

Our approach leverages a standard base model with multiple task heads. The multi-task

multi-class classification loss function we use consists of a simple sum of cross-entropy losses,

LMT =
1

N

T∑
t=1

Nt∑
i=1

[
−
∑
c∈Ct

(
ℓti,c log pti,c

)]
, (5.1)

where N =
∑T

t=1 N
t is the total number of data points from T tasks and N t is the number

of data points for the t-th task. Ct is the number of classes for task t. ℓti,c is either 0 or 1,

indicating whether class label c is the correct classification of the i-th data point from the

t-th task, and pti,c are the corresponding predicted probabilities.

5.2.7 Model Compression

Knowledge Distillation popularizes knowledge distillation (KD) [203] and aims to

create smaller models which approximate the performance of the larger models by teaching

the smaller model (student model) to emulate the larger model (teacher model). The original

approach used the final layer of logit-based knowledge distillation. The concept is to minimize

the distance (i.e., KL divergence loss function) of logit output (last layer) between teacher

and student models. Later work, including many applications in NLP, introduced variations

on this idea, including [114], which applied a combined loss, including masked language

modeling loss, cosine distance loss, and KL divergence loss to reduce BERT model size.

More generally, we can align the intermediate features between the teacher and the student

models rather than just the final layer, such as [194], which uses many intermediate layers

for distillation. MiniLM was introduced in [190] using self-attention distribution transfer

and self-attention value-relation transfer to achieve competitive performance in monolingual

92

and multilingual models.

In this work, we have primarily investigated distilling using the task-specific logits produced

by the final layer. Exploring additional intermediate representation, distillation is left to

future work to improve performance in the most miniature models we tested potentially.

Focusing on the last layer results in the following modified loss:

LMT-KD =

1

N

T∑
t=1

Nt∑
i=1

[
−

(∑
c∈Ct

ℓti,c log pti,c

)

+αF 2

(∑
c∈Ct

q̂ti,c log
q̂ti,c
p̂ti,c

)]
, (5.2)

where qti,c is the teacher model prediction of the i-th data point from the t-th task, q̂ti,c =
exp(qti,c/F)∑
j exp(q

t
j,c/F)

is the temperature modified teacher prediction, p̂ti,c =
exp(pti,c/F)∑
j exp(p

t
j,c/F)

is the tem-

perature modified student prediction, F is the temperature parameter [203], and α is the

teacher coefficient term controlling the relative impact of distillation to the label loss.

Structural Pruning In [58], the author introduced a notion that neural networks can be

compressed by removing entire sections without significantly impacting accuracy. Structural

pruning compresses networks by removing fundamental structural components like attention

heads, neurons, and even transformer layers and leverages KD to limit model degradation.

While most previous work in compression has focused on monolingual models, there is also a

growing body of work around multilingual and cross-lingual model compression [190]–[193],

[204]. We focus on two specific compressed architectures, MiniLM [191] and XtremeDistil

[192], and compare them in our use case. Ultimately we found MiniLM to be the most

effective at learning our specific set of tasks.

Quantization Quantization enables a reduction in model size and memory footprint

while also potentially increasing inference speed. Here we consider integer quantization, in

which the precision is reduced from a 32-bit floating point to an 8-bit integer. Quantization

can be done during training, known as quantization aware training (QAT), to minimize

degradation, or after training, known as post-training quantization (PTQ), to compress an

already trained model. [205] shows that by leveraging QAT, their ”Q8Bert” quantized model

was able to match the performance of the base BERT model on various NLP tasks.

In this work, we explore combining quantization via QAT with structural pruning to

reduce the model size further while maintaining good model performance.

93

5.2.8 Experimental Results

Our core set of results is developed around a multi-task cross-lingual model developed

internally at Qualtrics to help build understanding around customer feedback. The model

handles three separate but related multi-class classification tasks on text input; we refer to

these tasks throughout this paper as Task-1, Task-2, and Task-3. They refer to three text

classification tasks our group actively uses and develops, with similarities to models such as

sentiment or toxicity prediction [202]. Each task is implemented as a sequence classification

task where the input is direct customer feedback. Task-1 is a multi-class classification with

six labels, Task-2 is a multi-class classification with four labels, and Task-3 is a multi-class,

multi-label sequence classification with nine classes, and each class has independent binary

labels.

Our experiments explore the relationship between knowledge distillation, multi-task model-

ing, quantization, and multilingualism. We do not seek to provide a complete understanding

of how each axis impacts the outcomes. Instead, we strive to find the optimal way to optimize

the performance of pruned and quantized models by exploring the impact of multi-lingual

fine-tuning, variations in knowledge distillation, and task-specific teachers.

5.2.9 Dataset and Compressed Architecture Selection

Our dataset consists of internal customer experience data across multiple industries. The

data has been fully anonymized and aggregated and is used with permission. This process

protects customer data privacy and ensures data from any specific industry or company is not

over-represented or identifiable. The resulting text dataset comprises 257k text documents

across 16 languages labeled for Task-1 and 127k text documents across 12 for Task-2 and

Task-3. A description of the task types, number of labels, and labels can be seen in Table 5.1.

This experimental data is similar to the production datasets used in our production modeling

system.

For modeling, we primarily use PyTorch [206] and the Transformers library [207]. For

model quantization, we used the SparseML library [124], [208].

Instead of developing our target architecture, we leverage existing cross-lingual models

from the literature as a first approach to model compression. After a review of the literature,

we settled on experimentation around two cross-lingual models, XtremeDistil [204], [192]

and MiniLM [190], [191]. We summarize the characteristics of the architectures evaluated

in Table 5.2, where the most miniature model considered was 6 layers and 22M parameters.

To further narrow to a single cross-lingual model, we experimented using a subset of our

94

Task-1 Task-2 Task-3

(Multi-class) (Multi-class) (Multi-label)

Samples # Samples # Samples

T1-L1 93738 T2-L1 83545 T3-L1 33463

T1-L2 70218 T2-L2 36018 T3-L2 21562

T1-L3 38786 T2-L3 4317 T3-L3 22556

T1-L4 26359 T2-L4 3198 T3-L4 1090

T1-L5 18792 T3-L5 7525

T1-L6 9837 T3-L6 44485

T3-L7 11341

T3-L8 2518

T3-L9 1951

Table 5.1: Breakdown of task label distribution. Task labels are listed as T#-L#, where
T1-L1 represents Label 1 for Task-1.

Name #Layer#ParamSize

XLM-R(XLM-R
Base)

12 85M 1.12GB

XtremeDistil 6 22M 91MB

MiniLM-
L12(mMiniLMv2)

12 41M 236MB

MiniLM-
L6(mMiniLMv2)

6 22M 215MB

Table 5.2: Description of model architectures evaluated. #Params refers to the number of
transformer parameters.

datasets that covered 11 languages and evaluated how well the models perform in two set-

tings: with a distillation teacher and without a teacher. The subset contained 57k responses

labeled for Task-1 and 20k labeled for Task-2 and Task-3.

This experiment, as shown in Table 5.3, indicated that MiniLM (and its variants) would

be easier to train and perform model distillation in our setting. Due to the above results, we

targeted the MiniLM-L12 architecture for compressed models. Our definition of performing

better, worse, or the same was based on the 95th percentile confidence interval of a random

sample of 5 models trained from different random seeds. If we observe differences greater

than these intervals we consider them significant; otherwise, we consider the result to be the

95

Method Task-1 Task-2 Task-3

XLM-R 83.32 80.81 39.41

Xtremedistil (no
teacher)

67.69 69.24 31.23

Xtremedistil (with teacher) 67.82 70.99 28.93

MiniLM-L12 (no
teacher)

80.79 77.55 35.99

MiniLM-L12 (with
teacher)

81.43 78.44 36.54

Table 5.3: Results on each task for each model architecture, reported in Macro-F1. All
models were trained for two epochs, and the reported results are the per-task macro F1
scores.

same.

5.2.10 Cross-Lingual Model Results

Our goal in developing a cross-lingual model is to reduce the overhead of hosting multiple

monolingual models. However, the single cross-lingual model should perform at least on par

with the monolingual model. To test this assumption, we trained a single cross-lingual

model and tested it across all languages. We then trained 12 separate monolingual models,

starting from the publicly available XLMR-base pretrained weights (to avoid confounding

factors from alternative monolingual base models). We then evaluated these monolingual

models against the same cross-lingual evaluation dataset as a benchmark. A summary of

results is shown in Table 5.4, where we report results for fr, en, de, and ja languages. We

also evaluated 8 other languages and observed the same overall relative results. The best

monolingual Task-1 result overall was 73.39 (en) and worst was 14.52 (pl), the corresponding

cross-lingual reaching 79.12 (pl). The best cross-lingual result was 91.65 (en) and the worst

was 71.05 (ko) with the corresponding monolingual result dipping to 48.84 (ko). We observe

in every language we examined the cross-lingual model does better than the monolingual

model, strongly supporting a move to cross-lingual modeling for our tasks.

5.2.11 Cross-Lingual Multi-Task (XLMT) Model Results

We are also interested in combining multiple tasks into a single model to reduce the engi-

neering overhead of hosting our model. To evaluate whether our model maintained a similar

96

Train Lang Eval Lang Task-1 Task-2 Task-3

all
fr

87.69 82.43 36.16

fr 68.91 74.04 26.24

all
en

91.65 79.67 40.47

en 73.39 77.2 33.69

all
de

86.07 77.74 34.71

de 68.71 70.65 23.52

all
ja

80.3 70.71 32.2

ja 56.22 64.21 15.9

Table 5.4: Cross-lingual model comparison with monolingual models, evaluated on the
same target language. Across all languages and tasks we evaluated, we observed the
cross-lingual models to outperform monolingual models.

performance to single-task models, we evaluated the combined XLMT model compared to

the single-task models for both XLM-R and mBert pretrained models. The experimental

results in Table 5.5 show that the XLMT model performed similarly to, if not better, the

single-task model on Task-1 and Task-2 prediction. For Task-3, we observed some significant

degradation in the task performance.

To further confirm these results, we performed a similar analysis using another multilin-

gual model, mBert. Using mBert, we again observed some modest gains for the first two

tasks and significant degradation for the third task.

These results indicate our current multi-task architecture does benefit two of the three

tasks. However, for the final deployment, it will be important to consider moving our third

task into a separate model or develop alternative multi-task architectures to reduce the

performance gap.

5.2.12 Compressed XLMT Model Results

In developing the XLMT model, engineering overhead was reduced from 16×1+12×2 =

40 individual models to a single cross-lingual multi-task model or two based on the outcomes

of Task-3 above. However, given the size of the XLM-Roberta model, the hosting costs as-

sociated with serving inference, specifically given the need for GPU instances to generate

predictions at low latency, remained high. We focused on compressing the model itself to

reduce this base cost and the latency of this model. As mentioned earlier, this compressing of

the model, reducing its overall capacity, is in tension with the goals of maintaining the perfor-

mance of the combined XLMR model. Our results in Table 5.6 show that simply performing

structured layer pruning on the model resulted in some degradation of task performance. For

97

Model Train Method Eval Task F1

XLM-R

multi-task

Task-1 82.23

Task-2 76.03

Task-3 38.32

single-task

Task-1 81.12

Task-2 74.67

Task-3 51.27

mBert

multi-task

Task-1 78.88

Task-2 75.27

Task-3 35.88

single-task

Task-1 78.63

Task-2 74.31

Task-3 51.12

Table 5.5: Task-specific results for cross-lingual single-task models and multi-task models.
Macro-F1 results are reported on the full evaluation set, consisting of all languages (16 for
Task-1, 12 for Task-2/3).

Task-1 with MiniLM-12 architecture, the larger the, the smaller architectures considered, we

see about 1.6% relative degradation. MiniLM-6 shows 3.9% degradation, while XtremeDistil

shows over 20% degradation. This same pattern holds for Task-2, and for Task-3, we see even

less degradation for MiniLM-12. These results strongly favor MiniLM-12 and MiniLM-6 for

compressing our specific use case.

Model Task-1 Task-2 Task-3

XLM-R 82.23 76.80 35.90

MiniLM-L12 80.85 75.86 35.09

MiniLM-L6 78.97 72.42 35.34

XtremeDistil 61.83 61.59 24.00

Table 5.6: Results comparing the original MiniLM and XtremeDistil models with the
full-size XLM-R model across Task-1, Task-2, and Task-3 macro-F1 scores.

5.2.13 Distilled XLMT Model Results

To address the degradation resulting from structured layer pruning, we incorporated some

model distillation using the final layers of the full-size and compressed models. We explored

using single multi-task teachers, task-specific teachers, single cross-lingual teachers, and

98

language-specific teachers. However, we ultimately use cross-lingual task-specific teachers

because the performance of Task-3 as a single task model outperformed the multi-task model,

as shown in Table 5.5, and cross-lingual models consistently out-performed language-specific

models as shown in Table 5.4. To provide additional model compression after enabling

distillation, we trained the model with QAT to further reduce model complexity. To

evaluate model speedup, each model was run for sequences of length 128 with batch size 32

on 1 Nvidia T4 GPU leveraging TensorRT 36. Speedup was measured relative to the baseline

model, XLM-R (fp32).

Model Speedup Task-1 Task-2 Task-3

XLM-R (fp32) x1 82.23 76.80 35.90

XLM-R (int8 quantized) x3.64 81.09 73.60 35.80

MiniLM-L12 (fp32) x3.29 79.42 75.1 35.36

MiniLM-L12 (int8 quantized) x8.11 79.29 73.69 35.71

MiniLM-L6 (int8 quantized) x15.61 79.05 73.90 35.84

MiniLM-L12-mBert (int8 quantized) x8.11 79.05 73.48 35.57

Table 5.7: Results on model distillation and quantization aware training. Task-1, Task-2,
and Task-3 results are reported in macro-F1 scores. XLM-R models were used as the
teacher in all results, except for MiniLM-L12-mBert, which used mBert teachers.

The two best models after distillation were the quantized MiniLM-L6 model with 2.60%

average relative task degradation and non-quantized MiniLM-L12 with 2.37% average rel-

ative task degradation. We found that quantized MiniLM-L6 was able to improve more

from distillation than MiniLM-L12. While we are still investigating the cause, our current

hypothesis is that the smaller model provides some regularization against overfitting versus

the larger model. In terms of speedup, our quantized MiniLM-L6 model provided the most

speedup at 15.61x speedup over the baseline. In our final assessment, we found that using

task-specific model distillation on the MiniLM-L6 model with quantization provided a strong

result in model size while maintaining model performance, as shown in Table 5.7. However,

in considering the best model overall, the MiniLM-L12 in Table 5.6 provided a minor overall

degradation of 1.71% and a modest speedup of 3.29x.

5.2.14 Business Impact

An implementation of these compression techniques and choices was developed in our

production training system. At Qualtrics, this system has generated significant business im-

36https://developer.nvidia.com/tensorrt

99

https://developer.nvidia.com/tensorrt

pact across customers, new features, financial, environmental, and operational costs, system

flexibility, and robustness.

5.2.15 Feature impact

Given the compressed and multi-task models’ speedup, we observe significant increases

in throughput across use cases. This enables us to serve more customers and help new

features for previously too compute-intensive customers. For example, this speedup enables

ML pipelines that run 3-4 models serially in the same time window as a single model.

Additionally, the flexibility of cross-lingual models enables us to serve more customers in

more languages without large training sets or comprehensive language specialization.

5.2.16 Financial impact

Conservatively, we estimate approximately 44% savings in terms of hardware cost from

the developments in compression of the multi-task cross-lingual model compared to an un-

compressed system at similar latency and throughput. In addition, by combining multiple

tasks invoked with a similar load into a single model, we achieve a fraction of the total

inference cost.

These savings are driven by several factors: reducing base instance capacity, reducing

the amount of dynamic scaling, and allowing for the deployment of lower-cost hardware.

We note that the savings are limited by the ongoing cost of the base capacity, even when

reduced, which creates a floor for cost savings even with multiple times faster models.

Currently, we deploy our models on a public cloud with a cost of approximately $80K/-

month/model. The compression technique used in this paper reduces cost by 44%, resulting

in $35K savings/month for a single model compared to the current model in production

for the same tasks. As we push our compression framework to various other NLP sys-

tems currently developed by this group, it can result in potential yearly cost savings in the

single-digit millions of dollars. Considering current macroeconomic conditions, when there

is an industry-wide need for financial cost reduction, significant savings can strengthen the

fundamentals of a typical SaaS company like Qualtrics.

5.2.17 Ethical impact

We are pleased that our efforts to compress models will support environmental sustain-

ability. By reducing the amount of power and resource needed to run the same inference,

100

we anticipate a meaningful impact on the environmental footprint. However, we are unable

to quantify it concretely at this time.

5.2.18 Operational Impact and Robustness

While MiniLM-L6 provided better speedup, business needs required the lower degrada-

tion provided by MiniLM-L12 for the first set of models. By leveraging the compressed

XLMT model, we enable additional flexibility in production deployment scenarios, including

different instance types (CPU, GPU, custom accelerators). This allows us to serve high

throughput inference while balancing cost. This was not previously viable with larger mod-

els, which required GPUs to serve high throughput inference. By enabling this flexibility,

we also improve system robustness, as the models are robust to instance unavailability or

instance downtime for any instance.

Additionally, savings from moving to a single multi-task model results in a reduced work-

load for our engineering teams, removing per-task deployments and deployment pipelines

and lowering the barriers to new tasks and language support. Specifically, multi-task and

cross-lingual modeling reduces the number of models for these tasks from 36 potential mod-

els (12 languages, three tasks) to a single model, reducing operational costs from 6-7 on-

call/operations engineers to 1. Compression reduces this cost by lowering latency and in-

creasing throughput, reducing the operational cost of mitigating latency spikes and scaling

issues.

5.2.19 Conclusion

We have presented a case study into the Qualtrics approach for leveraging cross-lingual

and multi-task modeling techniques in combination with model distillation and quantization

techniques to develop models that can handle traffic volumes at scale. The results show that

these methods can be combined effectively to reduce deployment overhead and maintenance

and achieve up to 15.61x speedup with 2.60% average degradation for our multi-class clas-

sification tasks. Our results explore boundary cases where compression works well and can

degrade past business requirements; combining up to 12 languages works well; combining

tasks works well, and where it does not. These approaches have been necessary for us to scale

up our unique text classification problems in the growing field of experience management.

We anticipate these results will help guide other groups hoping to reduce model inference

costs and contribute to future theoretical work around the trade-off between model compres-

sion and model consolidation. Looking forward, we plan to apply these methods to more

101

complex sequence labeling tasks and explore additional techniques such as model sparsity

and neural architecture search to see if even faster models can be developed with acceptable

levels of model performance.

5.3 TO ASYMMETRY AND BEYOND: STRUCTURED PRUNING OF SEQUENCE
TO SEQUENCE MODELS FOR IMPROVED INFERENCE EFFICIENCY

5.3.1 Overview

Sequence-to-sequence language models can be used to produce abstractive summaries

which are coherent, relevant, and concise. Still, model sizes can make deployment in latency-

sensitive or web-scale implementations difficult. This section studies the relationship between

model size, structured pruning, inference efficiency, and summarization accuracy on widely

used summarization datasets. We show that model accuracy is tied to the encoder size

while inference efficiency is connected to the decoder. Using asymmetric pruning can lead to

nearly 3x improvement in inference latency with 1 point loss in Rouge-2. Moreover, we find

both the average degradation and the role of asymmetry to be consistent across model sizes

and variations in datasets. We release our code37, training regimes, and associated model 38

for broad usage to encourage usage and experimentation.

5.3.2 Introduction

The application of sequence-to-sequence language models has become an important tool

for natural language processing tasks such as machine translation [209], audio transcription

[38], and abstractive summarization [11]. Sequence-to-sequence models effectively turn each

of these aforementioned tasks into two-step problems: extraction and generation, and heav-

ily condition the generation on the input.

Besides ensuring on-topic responses sequence to sequence models have the added benefit of

being able to map inputs to targets with varying lengths and modalities in ways encoder or

decoder-only systems cannot.

When used for abstractive summarization, sequence-to-sequence modeling has two steps, ex-

traction using the encoder and generation using the decoder, which usually involves repeated

execution until an end-of-sequence token is emitted. While the cost of encoder execution

is essentially fixed on the batch size, the cost of decoder execution can be highly variable

37https://github.com/spacemanidol/Efficient-Web-Scale-Absractive-Summarization
38https://huggingface.co/spacemanidol

102

1 2 3

−30

−20

−10

0

Inference Speedup

%
D

eg
ra

d
at

io
n

in
R

ou
ge

-2

Accuracy vs. Inference Speed

Prune Decoder
Prune Encoder

Prune Both

Figure 5.2: Impact of Asymmetrical Pruning on inference speedups and ROUGE-2
degradation on Query Independent Web Summarization. Inference Time is the mean
inference time for a batch size of 1 on an A10 GPU over seven iterations.

and difficult to predict. Despite the broad study of sequence-to-sequence models and how

they compress research which studies the role of model symmetry as applied to inference

efficiency and model accuracy is lacking.

Recent advances in scaling language models have led to a wide study on scaling laws as

applied to language model performance [22], training data size [102], machine translation

[210], and even reinforcement learning [211].

We build on this work and study the impact of scaling on abstractive summarization and

what role model asymmetry has in it.

This asymmetry can manifest in various ways, such as the number of layers and hidden

units in the encoder and decoder and the type of attention mechanisms used.

In this section, we explore the role of asymmetry in the number of layers in encoder-decoder

language modeling for summarization and its impact on the performance of these models. As

shown in figure 5.2, the symmetry of pruning drives the impact on accuracy and inference

speedups for sequence-to-sequence models. Pruning the encoder portion of the network

leads to virtually no improvement in inference speed at the expense of accuracy. Pruning

the decoder provides speedup with minor losses in accuracy. The following research questions

drive our work:

• What scaling laws can be observed in abstractive summarization?

• What impact does encoder-decoder asymmetry have on abstractive summarization

103

accuracy?

• What impact does encoder-decoder asymmetry have on abstractive summarization

inference efficiency?

• What is asymmetries impact on accuracy and inference efficiency does scale have in

encoder-decoder models for abstractive summarization?

It is in answering these questions that we deliver the following contributions:

• We present the first robust study on scaling laws applied to the compression of sequence-

to-sequence modeling.

• We demonstrate that the asymmetric inference cost of sequence-to-sequence models

leads to asymmetric pruning for optimal inference efficient compression.

• We empirically demonstrate on a wide variety of benchmarks how Asymmetric Com-

pression can lead to a 2.7x inference speedup with no loss in accuracy on the XSUM

dataset.

5.3.3 Scale and Abstractive Summarization

Sequence-to-sequence language models such as BART [212], T5 [11], and PEGA-

SUS [37] combine transformer encoders and decoders to produce models which can adapt to

novel tasks and reach top performance on tasks ranging from information retrieval [213] to

summarization [11].

We focus on the instruction-tuned FLAN-T5 models [214] as their performance is compet-

itive and they feature wide variations in model size ranging from 60 million to 11 billion

parameters and given the cost of training the larger variants, focus on the small, base, and

large variants.

Abstractive summarization is a method of sequence compression where a source doc-

ument D is transformed into a target document dsum, which is shorter but faithful to the

input.

Using a sequence-to-sequence model such as T5 [11], a transformer-based encoder (enc) pro-

duces a contextual document representation e, and a transformer-based decoder generates

dsum one token at a time conditioned on e. Models are initially pre-trained in a self-supervised

fashion and then fine-tuned using a set of source and target documents where each document

d ∈ D contains a dsum, which is both shorter than d and true to the source.

Datasets of use are a combination of public and academic benchmarks and a proprietary

104

web search dataset. The CNN/DailyMail (CNNDM) [215] and XSUM [40] datasets are based

on the summarization of English new language models. The CNN/Dailymail abstractive text

summarization dataset is a collection of documents from CNN and Daily Mail annotated

for descriptive summaries. The dataset consists of 311,672 documents and their respective

summaries.

XSum is a dataset for training and evaluation of single-source document summarization.

Given a document X the goal is to produce a summary Y which answers the question What

is a document about?. It is comprised of 226,711 articles along and their human-generated

summary. The documents come from BBC articles covering broad topics like news, sports,

and technology from 2010-2017.

The Query Independent Web Summary (QIWS) is a proprietary corpus of abstractive sum-

maries of web pages that are used to create informative contextual snippets for search engine

users. It is important to note the differences in compression factor in each dataset as each

impact how decoder-driven inference latency is. Further information on the makeup of each

dataset can be found in table C.1

Metrics For each dataset, we evaluate model performance by measuring the ROUGE-

Model R-2 Gain BS 1 Latency Impact BS 8 Latency Impact BS 16 Latency Impact

small 17.55 0.00% 138 1 230 1 330 1

base 19.77 12.63% 199 1.44 550 2.39 931 2.82

large 21.15 20.51% 445 3.22 1480 6.43 2700 8.18

Table 5.8: Impact of scale on inference throughput for abstractive summarization models
trained on the XSUM dataset. Latency is measured in MS/batch, and the impact is the
impact to latency vs. the small model

Model R-2 Gain BS 1 Latency Impact BS 8 Latency Impact BS 16 Latency Impact

small 29.03 0 524 1 653 1 729 1

base 34.19 17.77% 746 1.42 1060 1.62 1310 1.80

large 37.37 28.72% 1,430 2.73 2240 3.43 3320 4.55

Table 5.9: Impact of scale on inference throughput for abstractive summarization models
trained on the QIWS dataset. Latency is measured in MS/batch, and the impact is the
impact to latency vs. the small model

1 (R-1), ROUGE-2 (R-2), ROUGE-L (R-L), RougeSum-L (RSL) 39 [216], and Generation

Length (GenL) on the test portion of the dataset. To aid the reproducibility and extension

of our work, we experiment using HuggingFace’s Transformers 40, release our training and

39Rouge-L is sentence level vs. RougeSum-L is summary level
40https://github.com/huggingface/transformers

105

Model R-2 Gain BS 1 Latency Impact BS 8 Latency Impact BS 16 Latency Impact

small 11.09 0 171 1.00 252 1.00 344 1.00

base 15.69 41.50% 255 1.49 550 2.18 845 2.46

large 16.34 47.41% 525 3.07 1370 5.44 2300 6.69

Table 5.10: Impact of scale on inference throughput for abstractive summarization models
trained on the CNNDM dataset. Latency is measured in MS/batch, and the impact is the
impact to latency vs. the small model

0 100 200 300 400 500 600 700 800

0

10

20

30

40

Model Parameters (millions)

%
G

ai
n

in
R

ou
ge

-2
(v

s.
S

m
al

l)
Summarization Accuracy vs. Model Size

QIWS
CNN/DM [215]

XSUM [40]

Figure 5.3: Model Size vs. Gain to summarization accuracy as measured by the relative
Gain in rouge-2 vs. the small model.

pruning scripts 41 and model variants for datasets that are publicly available datasets 42.

5.3.4 Scaling Laws for Abstract Summarization

To study the role of scale in abstractive summarization, we train small, base, and large

models of the three datasets mentioned above. We do not study the XL (3B) and XXL

(11B) as they are expensive and slow to train.

For all of our experiments, we train on various hardware but fix the batch size to 64 using

gradient accumulation and leverage the hyperparameters in C.2. While further hyperparam-

eter optimization and instruction tuning would likely lead to further gains in accuracy, our

work is not focused on absolute Gains but on the relative relation of scale.

41https://github.com/spacemanidol/Efficient-Web-Scale-Absractive-Summarization
42https://huggingface.co/spacemanidol

106

As shown in 5.3, C.3, C.4, and C.5, there is a substantial role between scale and perfor-

mance, but there is a substantial variation across datasets.

Datasets with short candidate summaries, such as XSUM, see nearly three times the impact

compared to the long summaries of QIWS and XSUM. During qualitative evaluations, the

role of scale can easily be observed as smaller models generate more short keyword summaries

while introducing scale makes responses more natural.

Small Base Large

lenc ldec R-2 R R-2 R R-2 R

6 6 29.03 100.00% 34.19 100.00% 37.37 100.00%

6 5 28.90 99.55% 34.00 99.44% 37.59 100.59%

6 4 28.56 98.40% 34.50 100.91% 36.56 97.84%

6 3 27.94 96.24% 33.70 98.58% 35.74 95.64%

6 2 24.85 85.61% 31.93 93.38% 35.13 94.01%

6 1 15.41 53.08% 28.05 82.03% 33.69 90.15%

5 6 27.92 96.17% 33.57 98.18% 36.39 97.38%

4 6 27.75 95.60% 33.06 96.69% 35.90 96.07%

3 6 25.20 86.82% 32.23 94.28% 34.22 91.58%

2 6 23.67 81.55% 27.47 80.35% 33.42 89.43%

1 6 18.23 62.79% 25.57 74.78% 30.31 81.11%

5 5 26.82 92.38% 32.88 96.18% 36.32 97.20%

4 4 26.62 91.72% 32.81 95.96% 35.98 96.29%

3 3 23.12 79.64% 28.70 83.95% 33.00 88.31%

2 2 19.14 65.92% 26.53 77.60% 30.78 82.38%

1 1 6.09 20.99% 19.64 57.43% 22.77 60.94%

Table 5.11: Relation between scale and asymmetry on model performance on the QIWS
dataset

5.3.5 Inference Benchmark

To evaluate the impact of asymmetry on inference, we run experiments on the throughput

of each model. Using an A10 GPU and the models from our QIWS datasets, we evaluate

performance with a max sequence length of 1024, a max summary of 256, and batch sizes

1, 8, and 16 using native inference in PyTorch. We report the mean and standard deviation

of timings on seven runs.

In comparing the impact of scale on R-2 vs. the effects on latency across batch sizes in 5.8,

5.10, 5.9 it becomes clear that larger models are more expensive to execute significantly as

batch sizes increase. This is because of potential differences in output length within a batch

as the batch completes when all sequences have produced an EOS token. To alleviate this

issue bottleneck, improved streaming methods for improved batching have been proposed

107

[217] but can be challenging to manage.

5.3.6 To Asymmetry and Beyond

While prior work has studied how to improve inference and tangentially explored the

asymmetry between the encoder and decoder, we study that explicitly and across model

scales. We focus our studies on structural pruning as inference gains are easy to realize,

and this approach is highly compatible with other methods like quantization and unstruc-

tured pruning.

Following Shleifer et al., we adopt the Shink and then f ine (STF) tune approach for com-

pression. First, a model is trained until convergence on a fine-tuning summarization task.

Then, entire layers are removed from the encoder, decoder, or both, and the model is further

fine-tuned until it has re-converged.

Each model we study has a uniform number of encoder and decoder layers, so we prune only

the encoders, decoders, and a symmetric combination of the two combinations. We used

our three scales of uncompressed models (small, base, large), and we pruned the model in

multiples of 1 on the encoder, the decoder, and both. After pruning, models are fine-tuned

again and evaluated. This means that for each dataset, we have 16 variants for each model

size leading to 48 models per dataset and 144 models overall.

Given the wide number of models and the cost of multiple seeds or model-specific optimiza-

tion, we train each model once and do not optimize the parameters for each model. While

this leads to a worse-than-ideal performance, our goal is not to hyper-optimize models but

explore where there is high sensitivity. To save space, we use the shorthand lenc and ldec to

refer to the number portion of transformer encoder and decoder layers (out of 6), and R

refers to the percentage performance recall vs. uncompressed baseline. Detailed results have

been moved to the C.1.3 to save space.

5.3.7 Scale and Pruning

Looking at abridged results in 5.11, 5.12, and 5.13, there is a clear scaling law as smaller

models see much larger drops in performance when compressed to the same degree. For

example, on the QIWS dataset, compression to 1
6

of the layers on the encoder and decoder

cause an 80% drop in R-2 on a small model but only 40% on the larger model. This scale

comparison is 65% to 26% on CNNDM and 64% to 45% on XSUM datasets.

Similar scaling results hold with encoder or decoder pruning, where compressing large mod-

108

Small Base Large

lenc ldec R-2 R R-2 R R-2 R

6 6 17.55 100.00% 19.77 100.00% 21.15 100.00%

6 5 17.68 100.74% 19.92 100.76% 21.30 100.69%

6 4 17.27 98.36% 19.85 100.42% 21.32 100.81%

6 3 16.40 93.43% 18.85 95.37% 21.08 99.66%

6 2 15.35 87.42% 18.68 94.51% 20.67 97.73%

6 1 11.33 64.57% 16.48 83.38% 19.49 92.12%

5 6 17.69 100.81% 19.92 100.76% 21.13 99.88%

4 6 17.35 98.84% 19.67 99.50% 20.83 98.47%

3 6 16.80 95.70% 18.85 95.37% 20.53 97.06%

2 6 15.54 88.51% 18.22 92.14% 19.74 93.33%

1 6 13.31 75.83% 17.06 86.27% 18.68 88.31%

5 5 17.07 97.23% 19.72 99.74% 21.23 100.34%

4 4 16.20 92.28% 19.17 96.99% 20.90 98.81%

3 3 14.91 84.95% 17.46 88.29% 20.13 95.16%

2 2 11.97 68.17% 15.87 80.26% 18.47 87.30%

1 1 6.05 34.45% 12.23 61.88% 15.51 73.32%

Table 5.12: Relation between scale and asymmetry on model performance on the CNNDM
dataset

Small Base Large

lenc ldec R-2 R R-2 R R-2 R

6 6 11.09 100.00% 15.69 100.00% 16.34 100.00%

6 5 11.61 104.74% 15.27 97.35% 19.80 121.16%

6 4 11.43 103.12% 14.91 95.03% 19.30 118.09%

6 3 11.24 101.36% 15.40 98.17% 18.92 115.77%

6 2 10.53 94.98% 15.19 96.82% 17.96 109.93%

6 1 6.03 54.42% 13.73 87.53% 16.47 100.76%

5 6 11.18 100.82% 15.92 101.47% 19.43 118.88%

4 6 10.61 95.68% 14.10 89.91% 18.33 112.16%

3 6 10.11 91.16% 13.84 88.21% 16.90 103.39%

2 6 8.59 77.52% 12.10 77.12% 14.97 91.61%

1 6 7.70 69.43% 10.27 65.47% 12.52 76.63%

5 5 10.73 96.76% 15.72 100.22% 19.18 117.38%

4 4 10.19 91.96% 14.30 91.15% 17.56 107.43%

3 3 9.50 85.69% 12.44 79.32% 15.89 97.21%

2 2 7.31 65.91% 10.67 68.05% 12.15 74.34%

1 1 4.00 36.09% 7.74 49.35% 8.96 54.86%

Table 5.13: Scale and Pruning on XSUM dataset

els lead to a 5x lower loss in performance than small models. As the model’s size grows, the

impact of decoder vs. encoder-only pruning becomes more muted. On the CNNDM dataset,

the gap between the decoder only and encoder only pruned to 1
6

is 10% with the FLAN-T5

small but only 4% with the large variant. When comparing asymmetric and symmetric, the

109

0 1 2 3 4 5

10

15

20

Portion of Model Pruned (Out of Six)

R
ou

ge
-2

Role of scale and compression on CNNDM

smallencoder
smalldecoder
smallboth

baseencoder
basedecoder
baseboth

largeencoder
largedecoder
largeboth

Figure 5.4: Relationship between model compression, model size, and summarization
accuracy measured by rouge-2 vs. Number Layers. smallencoder refers to a FLAN-T5 small
which has only pruned the encoder, smalldecoder for only the decoder, and smallboth for the
encoder and decoder

gap is even further pronounced where the small gap is 30% while the large is 20%.

As shown in figure 5.4, the impact of compression becomes more muted as the model size

grows. In other words, larger models are more compressible and amenable to asymmetry in

this compression.

The impact of asymmetry is easiest to understand as it is not surprising that complete prun-

ing of a model leads to higher losses than partial pruning across datasets and model sizes.

While this finding is not immediately surprising, evaluating the inference costs becomes im-

portant.

5.3.8 Inference Benchmarks

We evaluate the impact of asymmetry in a similar method to our scale experiments.

Using an A10 GPU, we evaluate performance for summarization on a portion of each model’s

respective evaluation datasets with a max sequence length of 1024, a max summary length

of 256, and batch sizes 1, 8, and 16.

Looking at the focused set of results for large models across datasets in table 5.14 on the

impact of R-2 vs. inference speedup, we can see a clear relationship between asymmetry

110

QIWS CNN/DailyMail XSUM

lenc ldec Impact Speedup Impact Speedup Impact Speedup

6 3 -4.36% 1.80 -0.34% 1.65 15.77% 1.64

6 2 -5.99% 2.44 -2.27% 2.03 9.93% 2.07

6 1 -9.85% 3.83 -7.88% 2.70 0.76% 2.71

3 6 -8.42% 1.04 -2.94% 1.14 3.39% 1.16

2 6 -10.57% 1.04 -6.67% 1.19 -8.39% 1.21

1 6 -18.89% 1.06 -11.69% 1.27 -23.37% 1.30

3 3 -11.69% 1.91 -4.84% 1.94 -2.79% 2.06

2 2 -17.62% 2.20 -12.70% 2.78 -25.66% 2.83

1 1 -39.06% 2.44 -26.68% 4.96 -45.14% 4.84

Table 5.14: Relationship between accuracy and speedup of encoder only, the decoder only,
encoder and decoder pruning on FLAN-T5 Large models on CNN/DM, XSUM, and
QIWS. Speedup is measured by comparing the improvements in latency for batch size one
vs. the uncompressed baseline. The impact is the relative loss of Rouge-2 of compressed
models vs. the uncompressed baseline.

and inference efficiency. While detailed inference results can be found in the appendix C.1.4

on this focused set of results, we can see that pruning only the encoder leads to no more

than 30% improvement in inference efficiency at a sizable loss in accuracy. Pruning the

model symmetrically leads to realizable inference improvements of up to 5x at the expense

of summarization accuracy.

Alternatively, when only the decoder is pruned, it is possible to see most of the inference

speedups seen during constant pruning with a substantially lower impact on accuracy. On

the CNN/DM dataset, constant pruning leads to 8% better inference but losses nearly four

times the performance of non-uniform compression.

Small Base Large

lenc ldec Impact Speedup Impact Speedup Impact Speedup

6 6 -3.76% 1.79 -1.42% 1.76 -4.36% 1.80

6 6 -14.39% 2.69 -6.62% 2.13 -5.99% 2.44

6 6 -46.92% 3.97 -17.97% 3.69 -9.85% 3.83

3 3 -13.18% 1.02 -5.72% 1.04 -8.42% 1.04

2 2 -18.45% 1.02 -19.65% 1.05 -10.57% 1.04

1 1 -37.21% 1.03 -25.22% 1.06 -18.89% 1.06

3 3 -20.36% 1.40 -16.05% 1.86 -11.69% 1.91

2 2 -34.08% 1.30 -22.40% 2.48 -17.62% 2.20

1 1 -79.01% 3.91 -42.57% 3.95 -39.06% 2.44

Table 5.15: Relationship between accuracy and speedup of encoder only, decoder only,
encoder and decoder pruning on FLAN-T5 models on QIWS concerning model size.
Speedup is measured by comparing the improvements in latency for batch size one vs. the
uncompressed baseline. The impact is the relative loss of Rouge-2 of compressed models
vs. the uncompressed baseline.

111

lenc ldec Impact Speedup (BS1) Speedup (BS8) Speedup (BS16)

6 3 -0.34% 1.65 1.18 1.15

6 2 -2.27% 2.03 1.25 1.22

6 1 -7.88% 2.70 1.36 1.29

6 3 -2.94% 1.14 1.48 1.54

6 2 -6.67% 1.19 1.68 1.89

6 1 -11.69% 1.27 2.21 2.43

3 3 -4.84% 1.94 1.96 1.97

2 2 -12.70% 2.78 2.88 2.92

1 1 -26.68% 4.96 5.54 5.64

Table 5.16: Relationship between accuracy and speedup of encoder only, decoder only,
encoder and decoder pruning on FLAN-T5 large models on CNN with variation in
inference batch size. Speedup is measured by comparing the improvements in latency vs.
the uncompressed baseline at various batch sizes. The impact is the relative loss of
Rouge-2 of compressed models vs. the uncompressed baseline.

0 1 2 3 4 5
60

65

70

75

80

Portion of Model Pruned (Out of Six)

G
en

er
at

io
n

L
en

gt
h

(t
ok

en
s)

Genl vs. Model Pruning on CNNDM

smallencoder
smalldecoder
smallboth

baseencoder
basedecoder
baseboth

largeencoder
largedecoder
largeboth

Figure 5.5: Role of scale and compression on generation length

5.4 DISCUSSION

5.4.1 Scale, Inference, and Pruning

As shown in table 5.15, the gains found by pruning are extremely consistent independently

with scaling. Pruning only the encoder leads to a 4-6% improvement in latency, and pruning

just the decoder leads to 400%, as does uniform compression. This is expected as structural

pruning removes a constant portion of the network, which leads to consistent latency gains

irrespective of model scale.

112

1 8 16
1

2

3

4

5

Batch Size

S
p

ee
d

u
p

Impact of batch size on inference speedups

6enc − 3dec

6enc − 2dec

6enc − 1dec

3enc − 6dec

2enc − 6dec

1enc − 6dec

3enc − 3dec

2enc − 2dec

1enc − 1dec

Figure 5.6: Relationship between inference batch size and realized inference speedup with
uniform and no uniform pruning of FLAN-T5 large on CNNDM

5.4.2 Scale, Pruning and Generated Length

Despite expecting a significant trend in the role of scale and pruning in a generation, we

do not see any noticeable trends. As shown in figures 5.7 and 5.5, there is no discernible

trend of the Role of scale and pruning in generation length. There is a minor jump in

generation length from FLAN-T5 small to FLAN-T5 base across all datasets but no such

jump from FLAN-T5 base to FLAN-T5 large. We believe this is because the smaller models

are less fluent and need more tokens to ensure accurate coverage. As models scale, this is

no longer needed, and the models converge to a uniform summary length.

5.4.3 Asymmetry Meet Large Batches

Despite the allures of asymmetrical pruning, it is not without fault. As shown in table

5.16 and figure 5.6, the improvements in inference efficiency are heavily influenced by the

batch size. When the batch size is minimal, the difference in the type of non-uniformity

has a significant impact on inference efficiency. As batches scale, the speedup from encoder

only or decoder only becomes much closer and becomes minor when compared to uniform

methods. This indicates why further work on improving generative inference methods is

highly relevant, as this problem impacts other efficiency-driven processes like CALM [113].

113

0 100 200 300 400 500 600 700 800
20

30

40

50

60

70

Model Parameters (millions)

G
en

er
at

io
n

L
en

gt
h

(t
ok

en
s)

Genl vs. Model Size

QIWS
CNN/DM

XSUM

Figure 5.7: Role of scale on generation length

5.4.4 Conclusion and Future Work

In this work, we explore the role of symmetry in the pruning of sequence-to-sequence

models for abstractive summarization, finding that pruning asymmetrically can lead to in-

ference speedups with low losses in accuracy. Our work also explores the relationship between

model scale and the sensitivity to pruning, finding that larger models see lower losses when

pruned. This compresses FLAN-T5 models to deliver 3x inference gains with a 1 Rouge-2

point loss.

In future work, we seek to study how pseudo labeling, early exiting, and quantization can

be combined to improve further the inference efficiency of sequence-to-sequence models.

5.5 CONCLUSION AND KEY TAKEAWAYS

In conclusion, in this chapter, we study the effective use of pruning, quantization, and

knowledge distillation to improve the inference efficiency of web-scale workloads. In the

exploration of optimal compression mechanisms, we find the following key takeaways:

Larger models compress better. In multi-task multi-label compression, we find that larger

models can be quantized with no loss in accuracy while the smaller models see higher losses.

Moreover, smaller models require specialized compression regimes such as multi-teacher

knowledge distillation. In abstractive summarization, larger models are significantly more

robust to structural pruning. Small models see noticeable impacts on accuracy even with

114

minor compression, but larger models can be more heavily pruned before they see losses.

Exploiting the structure of inference is paramount. While training of large models favors uni-

formity, understanding the costs of inference is key to compression. Sequence-to-sequence

models leverage the decoder substantially more than the encoder for inference. This leads

to minor gains in inference efficiency with compression on the encoder and major gains on

the decoder. Moreover, since sequence-to-sequence models deeply leverage the contextual

representation extracted by the encoder, there is a higher impact on accuracy when the

encoder is compressed vs. the decoder.

Scaling workloads requires trade-offs. Large web-scale inference workloads actively balance

cost efficiency, model quality, maintainability, and expandability. As a result, large workloads

are constantly trading off the impact of improvements on one portion with losses in another.

While using advanced compression techniques can mitigate the impact of compression, it

can introduce substantial overhead in the training regime.

115

CHAPTER 6: CONCLUSION

6.1 OVERVIEW

In the previous few chapters, our work has demonstrated how language models can be

used for web-scale understanding, generation, and retrieval. This thesis’s main contribution

to natural language processing and web-scale information retrieval is a robust and thorough

evaluation of methods and approaches for improving inference efficiency and retrieval accu-

racy. From the use of quantization in multi-task classification to structured pruning for text

generation, compression can lead to major speedups with little to no impact on accuracy.

In this chapter, we will discuss key overall takeaways supported by our research. Addition-

ally, the chapter discusses the limitations of the research and potential directions for future

research.

The practical implications of the research are also discussed, highlighting the potential appli-

cations of the findings in real-world scenarios. Finally, we summarize our main contributions

and impact, emphasizing the significance of the research in advancing state-of-the-art natural

language processing and web-scale information retrieval.

6.2 TRAIN LARGE THEN COMPRESS

With the growth of language model sizes, understanding scale’s impact on compressibil-

ity is paramount. Understanding that larger models are more sample-efficient, questioning

how to trade off the model’s initial size and compression ability is natural.

First, as our work on asymmetric generation shows, larger models compress better. Indepen-

dent of pruning approaches, as models grew from 60m parameters to over 700m, the impact

of structured pruning on model performance dropped by nearly 4x. As shown in Chapter 2,

we see a similar trend in our experimentation with unstructured pruning as 3-layer models

lose 2-3x more performance (relative accuracy loss) than 12-layer models.

Given larger models compress better when attempting web-scale deployments, a practical

approach is to train the largest model one can, followed by compression until it reaches the

desired inference efficiency.

It is worth noting that the reason larger models compress better may be tied more closely to

being under-optimized. Training larger models is significantly more complex and expensive,

and as a result, small models are easier to optimize to a given corpus. Optimization in pre-

training commonly requires 10-100x the pretraining corpora and training length but leads

116

to large improvements in model accuracy, such as the gap between BERT and RoBERTa.

However, increasing training regimes by such ratios is impractical as models scale.

Moreover, given the costs of training at scale, larger models may be under-optimized. Since

larger models are more under-optimized, these models are easier to compress as the archi-

tecture still has plasticity. As shown in the performance gap in compressing RoBERTa vs.

BERT, more optimized models are harder to compress. The loss in accuracy on SQUAD

using the same pruning method leads to a 5-6x loss in accuracy with the optimized model

(RoBERTa) vs. the under-optimized model (BERT). Further study is needed to confirm this

hypothesis.

6.3 WEB SCALE DEPLOYMENTS ARE ALL ABOUT TRADE-OFFS

In many deployments of language models, model accuracy and inference efficiency are at

odds. Larger models commonly lead to improvements in accuracy at the cost of inference

latency. While it is possible to compress models without losing accuracy, these approaches

do not always lead to the needed improvements in inference efficiency. As a result, the

breadth of a model deployment is mostly driven by how sensitive the workload is to losses in

model sensitivity. Tasks where a 10% loss in model performance leads to minor variations in

outcomes are attractive to intensive compression, while tasks that cannot may only slightly

compress.

Moreover, trade-offs are involved in selecting the appropriate hardware and software in-

Layers Baseline (FP32) Cost Quantized (Int8) Cost
12 106 $4.99 423 $1.25
9 139 $3.79 558 $0.95
6 172 $3.06 689 $0.77
3 299 $1.76 1198 $0.44
2 441 $1.20 1766 $0.30
1 661 $0.80 2643 $0.20

Table 6.1: Estimated inference throughput and cost efficiency of compressing a Language
Model with 12 encoder layers. Cost represents the number of dollars required to perform
one million inferences. Inference costs and throughput are based on a g4dn.xlarge on AWS,
which is $0.5260/hr. Since the GPU in this variant does not support sparsity, we do not
include performance numbers for sparse or sparse quantized models.

frastructure for deploying language models at a web scale. For example, using specialized

hardware such as graphics processing units (GPUs) can significantly improve the perfor-

117

Layers Baseline (FP32) Cost Quantized (Int8) Cost Sparsity Cost Sparsity + Quantized Cost

12 47 $7.65 189 $1.91 156 $2.33 591 $0.61
9 63 $5.72 253 $1.43 208 $1.74 791 $0.46
6 90 $4.00 362 $1.00 297 $1.22 1130 $0.32
3 166 $2.18 664 $0.54 546 $0.66 2075 $0.17
2 230 $1.57 919 $0.39 756 $0.48 2871 $0.13
1 379 $0.96 1514 $0.24 1245 $0.29 4732 $0.08

Table 6.2: Estimated inference throughput and cost efficiency of compressing a Language
Model with 12 encoder layers. Cost represents the number of dollars required to perform
one million inferences. Inference costs and throughput are based on a m5.4xlarge on AWS
which is $0.768/hr

mance of language models but comes at the cost of increased infrastructure costs.

When deciding what size/scale of the model is needed for a given task, the most straightfor-

ward approach is to estimate the scale and budget needs. As shown in Table 6.2 and 6.1, a

simple framework can be built around the cost of serving relative to compression approaches.

These tables are built around a real-time classification system that processes 1 million text

samples daily in a batch fashion. For this workload, using an uncompressed model on a

CPU is still affordable, with a daily cost of $7.65, which probably does not require further

compression. Instead, consider a workload that needs to run a process on a much larger cor-

pus, say a web index of 10,000,000,000 documents. Running that same uncompressed model

would cost $76,500 a day! For that same context using an undersized 2-layer, the sparse

quantized model would be $1,300 or nearly 60x cheaper. As shown in our experimentation

with KALE in 4, going from 12 layers to 2 on the NQ dataset leads to only a 1.5% loss in

retrieval accuracy, which is often acceptable for the 60x cost savings.

6.4 COMPRESSION APPROACHES ARE ADDITIVE AND ADAPTABLE

There are many effective ways of compressing models, and each can be applied at many

points of model creation. As shown in chapter 3, compression approaches are mostly additive.

If the impact on inference efficiency of unstructured pruning is 2x while quantization is 2x,

then using both leads to 4x speedup. In practice, the realized gains of additivity are seen

as some non-linearity; they can effectively be combined for maximal results.

Besides being addictive, various compression approaches have the benefit of being able to be

applied at many stages of model creation. As shown in 3, compression can be used during

pre-training or fine-tuning, and compressed models can be adapted to specialized domains

without further optimization or reduction.

118

6.5 REPRESENTATION ALIGNMENT IS CRUCIAL

Compression can be thought of as removing portions of a model while striving to lose

none of the model’s expressivity. While it is possible to do so without further specialization,

it cannot be easy. As a result, approaches that improve the compressed model’s ability to

emulate the original model are desirable. One of the most effective approaches is represen-

tation alignment, also called knowledge distillation.

As shown in chapter 5, 4, 3, the impact of representation alignment allows models to perform

well when compressed and on robust inputs. This alignment can happen using the cosine

distance, KL divergence of their hidden states, or even just training on pseudo labels.

In 4.3.2, we discuss how representation alignment can be used to make models more robust,

and we take the exact formulation and use it in B.1.4 to compress the model.

6.6 LIMITATIONS

While our work has focused on showing how widely compression approaches can be de-

ployed, compression can be difficult to implement and realize. Our experiments required a

high degree of experimentation on the role of compression on model performance before we

could effectively compress models.

Moreover, realizing the actual speedups from compression can be difficult. For example,

using unstructured sparsity can lead to nearly 5x improvement in inference efficiency on a

CPU while only 1.4x on a GPU.

6.7 FUTURE WORK

Creating robust and efficient language models involves navigating through a large space

of configurations from the model size/shape and the training and compression methods. In

this thesis, we have enumerated those combinations and explored their impact to understand

the trade-offs in efficiency, accuracy, and robustness. In our future work, we seek to improve

and expand the work covered in this thesis, apply compressed models to web-scale data, and

explore expanded efficiency and robustness.

Improving Compressing Efficiency With regards to existing, our improvements focus

on making our approaches in compression more efficient, easier to employ, and more robust.

As discussed in 6.6, our existing compression approaches require high degrees of experimen-

tation and many iterations to obtain improved efficiency without major loss in accuracy. We

119

believe that using improved distillation methods combined with pseudo-labeling methods

[218] will likely be a fruitful approach for efficient compression.

Additionally, we seek to combine our work on robust and efficient retrieval to evaluate the

trade-offs and interplay in compression and generalization. While we believe representation

alignment will be a robust mechanism to merge the two goals, further study is required.

Compression And Web-Scale Data While modeling and evaluation have seen widespread

success because of benchmarking datasets [168] [156], the cost of running these models has

commonly limited the research on examining model behavior at scale. We believe that by

leveraging our approaches in compression on existing and novel benchmarks, we can explore

how methods generalize to larger scales. First, we seek to understand how summarization

can be used to improve retrieval accuracy for the TREC Deep Learning Track by creating

summaries for its 12 million documents. Next, we seek to understand how current state-of-

the-art approaches scale to larger corpora. We will explore how models like SPLADE [219]

and CoLBERT [174] perform on corpora like ClueWeb 2022 [220].

Multi step optimization via Reinforcement Learning Expanding beyond our existing

work, we seek to explore reinforcement learning approaches, which have shown promising

results when applied to query execution optimization in databases. Yu et al. ’20 [221] have

shown that the reinforcement learning approaches can prove effective at query execution

optimization, which we believe could extend to optimizing models via layer and operator

fusion, pruning, and quantization.

In general, there is an opportunity to apply techniques developed for query optimization to

solve the problem of optimizing the compression of language models. While the use of rein-

forcement learning on language models is not new [222], we believe the scale and uniformity

of models would allow for automatic post-training optimization.

As another possibility, we may also adapt analytical cost models [223] to model the overall

cost of a neural LM by decomposing it into component costs. While the research focuses

on individual systems, large-scale deployments usually comprise many independent systems

that execute phase. For example, in modern information retrieval systems having dozens of

models run in phases is not uncommon. The compression on end-to-end retrieval has not yet

been studied in depth. It is unclear if it is better to compress retrievers such as bi-encoder

or re-rankers such as cross-encoders. As a result, further study into how the cost of complex

systems can be understood is key to scaling systems.

120

6.8 PUBLICATIONS

• The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large

Language Models - Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark

Kurtz, Benjamin Fineran, Michael Goin, Dan Alistarh - EMNLP 2022

• Sparse*BERT: Sparse Models Generalize To New tasks and Domains - Daniel Cam-

pos, Alexandre Marques, Tuan Nguyen, Mark Kurtz, ChengXiang Zhai - Sparsity in

Neural Networks Workshop at ICML 2022

• oBERTa: Improving Sparse Transfer Learning via improved initialization, distillation,

and pruning regimes - Daniel Campos, Alexandre Marques, Mark Kurtz, ChengX-

iang Zhai - The 4th Workshop on Simple and Efficient Natural Language Processing

(SustaiNLP 2023) at ACL 2023

• Dense Sparse Retrieval: Using Sparse Language Models for Inference Efficient Dense

Retrieval - Daniel Campos, ChengXiang Zhai - https://arxiv.org/abs/2304.00114 -

Arxiv Preprint

• Noise-Robust Dense Retrieval via Contrastive Alignment Post Training - Daniel Cam-

pos, Alessandro Magnani, ChengXiang Zhai - https://arxiv.org/abs/2304.03401 - Arxiv

Preprint

• Quick Dense Retrievers Consume KALE: Post Training Kullback Leibler Alignment of

Embeddings for Asymmetrical dual encoders - Daniel Campos, Alessandro Magnani,

ChengXiang Zhai - The 4th Workshop on Simple and Efficient Natural Language

Processing (SustaiNLP 2023) at ACL 2023

• Compressing Cross-Lingual Multi-task Models at Qualtrics - Daniel Campos, Daniel

Perry, Samir Joshi, Yashmeet Gambhir, Wei Du, Zhengzheng Xing, and Aaron Colak

- The Thirty-Fifth Annual Conference on Innovative Applications of Artificial Intelli-

gence (IAAI-23)

• To Asymmetry and Beyond: Structured Pruning of Sequence to Sequence Models

for Improved Inference Efficiency - Daniel Campos, ChengXiang Zhai - The 4th

Workshop on Simple and Efficient Natural Language Processing (SustaiNLP 2023) at

ACL 2023

121

https://arxiv.org/abs/2203.07259
https://arxiv.org/abs/2203.07259
https://2022.emnlp.org/
https://arxiv.org/abs/2205.12452
https://www.sparseneural.net/
https://www.sparseneural.net/
https://arxiv.org/abs/2303.17612
https://arxiv.org/abs/2303.17612
https://sites.google.com/view/sustainlp2023/call-for-papers?authuser=0
https://sites.google.com/view/sustainlp2023/call-for-papers?authuser=0
https://arxiv.org/abs/2304.00114
https://arxiv.org/abs/2304.00114
https://arxiv.org/abs/2304.00114
https://arxiv.org/abs/2304.03401
https://arxiv.org/abs/2304.03401
https://arxiv.org/abs/2304.03401
https://arxiv.org/abs/2304.01016
https://arxiv.org/abs/2304.01016
https://sites.google.com/view/sustainlp2023/call-for-papers?authuser=0
https://sites.google.com/view/sustainlp2023/call-for-papers?authuser=0
https://arxiv.org/abs/2211.15927
https://aaai.org/Conferences/AAAI-23/iaai-23-call/
https://aaai.org/Conferences/AAAI-23/iaai-23-call/
https://arxiv.org/abs/2304.02721
https://arxiv.org/abs/2304.02721
https://sites.google.com/view/sustainlp2023/call-for-papers?authuser=0
https://sites.google.com/view/sustainlp2023/call-for-papers?authuser=0
https://sites.google.com/view/sustainlp2023/call-for-papers?authuser=0

APPENDIX A: INTRODUCING AND TRANSFERRING SPARSITY FOR
EFFICIENT INFERENCE

A.1 THE OPTIMAL BERT SURGEON: SCALABLE AND ACCURATE
SECOND-ORDER PRUNING FOR LARGE LANGUAGE MODELS

A.1.1 Additional Comparisons

Here we reflect upon some other methods focused on efficient inference for LLMs, which

are orthogonal to weight pruning. For example, Learned Token Pruning [224] tries to remove

unimportant tokens in input sequences adaptively and provides 2x higher throughput at ¡

1% accuracy drop; at the same accuracy drop, our compressed model can achieve 8.4x higher

throughput. DeeBERT [115] and FastBERT [225] apply an early-exit technique for inference

speedup. The latter achieves 2-3x faster inference without performance degradation. How-

ever, the method only applies to batch size one. Nevertheless, in terms of direct comparison,

our compressed models can achieve 4x faster inference on CPUs without accuracy degrada-

tion. Overall, we emphasize that these methods complement our compression techniques, so

it would be interesting to investigate computational gains by combining them.

Computational costs In practice, for the 12-layer BERT model with d = 85M encoder

weights and block size B = 50, the O(Bd) memory requirement translates to approximately

17GB, which can be easily kept on the 24GB RTX 3090 card. While this amount of memory

is available on high-performance GPUs, splitting the NB × B × B tensor along the batch-

dimension NB and utilizing additional GPUs or even memory swapping with CPU is also

straightforward. Our implementation quickly updates the inverse Hessian approximation

and can run asynchronously while the following gradient is fetched. Computing saliency

scores and optimal weight updates take only a few seconds.

A.1.2 Optimal BERT Surgeon (oBERT) Hyper-Parameters

Hyper-parameters. The oBERT pruning method has three tunable hyper-parameters:

number of gradients (m), block size (B), and dampening (λ). These are supposed to be

tuned for the model and available computational resources. In all of our runs, across all

models and datasets, we use the same set of hyper-parameters which we found to work best

for the BERT model on the SQuAD v1.1 dataset. We conjecture that further tuning for

smaller models (3 and 6-layer models) could improve their results, but for simplicity and

fairness to other methods, we apply the same ones found for the BERT.

122

50 60 70
Sparsity (%)

10
20
30
40
50
60
70
80
90

F1
 sc

or
e

BERTBASE
B = 50
B = 5k
B = 500k
M-FAC

Figure A.1: One-shot pruning ablation study for the block size (B), with m = 1024 and
λ = 10−7, on the BERT model and the question-answering SQuAD v1.1 dataset. M-FAC
stands for the full inverse Hessian approximation [120].

Ablation studies. The procedure to find the optimal set of hyper-parameters for a model

consists of a grid search over the possible hyper-parameter combinations and one-shot prun-

ing runs to various high-sparsity targets to evaluate the quality of the pruning approximation

for each combination. We found that m = 1024, B = 50, and λ = 10−7 produce state-of-

the-art results for a negligible computational overhead with the BERT model. [120] shows

that larger block sizes require more gradients for better approximation. Given the size of

the BERT model, we picked this setup as it was the best-performing one that could still fit

on a single 24GB RTX 3090 GPU card. In Figures A.1, A.2, and A.3, we visualize a fraction

of the one-shot pruning ablations concerning all three hyper-parameters that motivated us

to pick these specific values.

A.1.3 Downstream Pruning

Teacher preparation. We use the KD from the fine-tuned BERT teacher outputs for all

downstream pruning runs. The teacher is fine-tuned on the corresponding downstream task

following the default hyper-parameters for SQuAD44 and GLUE (QQP and MNLI)45.

Pruning setup. In Table A.1 we describe in detail all hyper-parameters for downstream

pruning results presented in Table 3.3. For easier comprehension, we also visualize learning

44https://github.com/huggingface/transformers/tree/main/
examples/pytorch/question-answering

45https://github.com/huggingface/transformers/tree/main/
examples/pytorch/text-classification

123

50 60 70
Sparsity (%)

83

84

85

86

87

88

F1
 sc

or
e

BERTBASE
m = 128
m = 512
m = 1024

Figure A.2: One-shot pruning ablation study for the number of gradients (m), with B = 50
and λ = 10−7, on the BERT model and the question-answering SQuAD v1.1 dataset.

50 60 70
Sparsity (%)

78

80

82

84

86

88

F1
 sc

or
e

BERTBASE
= 10 6

= 10 8

= 10 7

Figure A.3: One-shot pruning ablation study with respect to the dampening (λ), with
m = 1024 and B = 50, on the BERT model and the question-answering SQuAD v1.1
dataset.

124

rate schedules in Figures A.4 and A.6, and sparsity schedules in Figures A.5 and A.7.

3-, 6-layer models. We prepare our 3 and 6-layer models for downstream runs in layer

dropping and retraining phase. We drop layers from our upstream teacher model (more

details on it in Appendix A.1.4). After dropping, we retrain the remaining layers, following

insights from [129], in the same setup used to prepare the upstream teacher with the addition

of the KD from it.

0 2 4 6 8 10
Epoch

2
3
4
5
6
7
8

Le
ar

ni
ng

 ra
te

1e 5

SQuAD
GLUE

Figure A.4: Visualized learning rate schedule for 10-epoch downstream runs.

A.1.4 Upstream Pruning

Teacher preparation. We prepare a teacher for upstream pruning by following some

insights from [51]. More concretely we start with the bert-base-uncased46 model, adopt pre-

training on two datasets (BookCorpus47 & English Wikipedia48) with focus on the masked

language modeling task (MLM) for 10-epochs with batch size 256 and learning rate linearly

decaying to zero from the initial value of 1e-4.

46https://huggingface.co/bert-base-uncased
47https://huggingface.co/datasets/bookcorpus
48https://huggingface.co/datasets/wikipedia

125

10 Epochs 30 Epochs

Batch size
16 for SQuAD,
32 for GLUE

Learning rate (initial, final)
(8e-5, 3e-5) for SQuAD,
(8e-5, 2e-5) for GLUE

(8e-5, 8e-6) for SQuAD,
(5e-5, 5e-6) for GLUE

Learning rate schedule linear decay with rewinds

Learning rate rewinds one at epoch=8
periodic every 4 epochs,

start at epoch=2
Knowledge Distillation (hardness, temp.) (1.0, 2.0)

Student model
12-layer: bert-base-uncased
6-layer: layer drop + pre-train with KD
3-layer: layer drop + pre-train with KD

Teacher model BERT
Prune start epoch=2
Prune end epoch=8 epoch=26
Pruning frequency 2x per epoch once every 4 epochs

Initial sparsity step
12-layer: 70%
6-layer: 30%
3-layer: 30%

Sparsity distribution global over all layers

oBERT parameters
Number of gradients m = 1024
Block size B = 50
Dampening λ = 10−7

Table A.1: Downstream pruning hyper-parameters used to obtain results presented in
Tables and 3.3.

126

0 2 4 6 8 10
Epoch

0

70
80
90

Sp
ar

si
ty

 (%
)

Figure A.5: Visualized sparsity schedule for 10-epoch downstream runs with initial sparsity
of 70% and target sparsity of 90%, following the cubic interpolation [128].

Pruning setup. In Table A.15 we describe in detail our upstream pruning recipe. As

can be noticed, our upstream pruning recipe is just a downscaled version of our 30-epoch

downstream-pruning recipe to 3-epochs.

A.1.5 Downstream Quantization

We perform QAT on top of dense and 4-block pruned models on SQuAD v1.1 as shown in

Table 3.3. We quantize to 8 bits the embedding matrices, linear modules of all encoder units

which includes matrices in their attention and feed forward layers, and the linear module

of the output layer. Weights that were pruned are kept constant (zero) during quantization

(sparsity mask preserved). Non-linear operations within the Softmax, LayerNorm and GeLU

are not quantized. For each dense and 4-block pruned model in Table 3.3, we perform ten

epochs training where the quantization observers are active for the first five and the remaining

is fine-tuning. We do hyper-parameter search over the learning rates of 1e-4, 8e-5, 5e-5, 3e-5

and the distillation hardness of 0.9 and 1.0. We then pick the model with the best F1 score.

127

3 Epochs

Datasets BookCorpus & English Wikipedia
Batch size 256
Initial learning rate 5e-4
Learning rate schedule linear decay with rewinds
Learning rate rewinds periodic every 0.5 epochs
Max sequence length 512
Weight decay 0.01
Knowledge Distillation
(hardness, temperature)

(1.0, 5.5)

Student model prepared upstream teacher
Teacher model prepared upstream teacher
Pruning frequency 4x per epoch

Table A.2: Upstream pruning hyper-parameters.

8 Epochs

Initial learning rate 1.5e-4
Learning rate schedule linear decay to 1.5e-6

Batch size
16 for SQuAD,
32 for GLUE

Knowledge Distillation
(hardness, temperature)

(1.0, 5.5)

Teacher model BERT

Table A.3: Sparse-transfer learning hyper-parameters used to fine-tune upstream-pruned
models at downstream tasks. These hyper-parameters are used to obtain results presented
in Table 3.2.

128

0 5 10 15 20 25 30
Epoch

1
2
3
4
5
6
7
8

Le
ar

ni
ng

 ra
te

1e 5

SQuAD
GLUE

Figure A.6: Visualized learning rate schedule for 30-epoch downstream runs.

A.1.6 Additional performance metrics

Due to the space constraints, in the section we report F1 score for SQuAD v1.1, matched

accuracy for MNLI, and accuracy for QQP dataset. As our hyper-parameters for MNLI

and QQP are the same, we refer to these two datasets as GLUE. In Table A.4 we report

the additional metrics too: exact match (EM) for SQuAD v1.1, mismatched accuracy for

MNLI, and F1 score for QQP dataset. Tables A.7 and A.8 present standard deviations of

the corresponding results in Tables 3.2 and A.4. Finally, Table A.6 presents the exact-match

metric for the corresponding results in Table 3.3.

A.1.7 Inference speedups and compression ratios of compressed models

Details on the results shown in Figure 3.2 are drawn from Table A.9. As shown in the

results, not all compound compressed models yield improvements in inference or compression

relative to retained model performance but those that do allow for massive improvements.

129

0 5 10 15 20 25 30
Epoch

0

70
80
90

Sp
ar

si
ty

 (%
)

Figure A.7: Visualized sparsity schedule for 30-epoch downstream runs with initial sparsity
of 70% and target sparsity of 90%, following the cubic interpolation [128].

Task
BERT
BASE

Sparsity
Soft
MvP

oBERT
(ours)

oBERT
(ours)

Epochs 10 Epochs 30 Epochs

SQuAD
EM

81.22
80%
90%
97%

-
76.60
72.70

-
80.76
76.14

82.08
81.12
78.11

MNLI
mm-acc

85.06
80%
90%
97%

-
81.80
80.10

-
83.58
80.67

84.91
84.35
82.01

QQP
F1

88.00
80%
90%
97%

-
86.80
85.50

-
87.69
87.05

88.63
88.30
87.66

Table A.4: Additional evaluation metrics for results

A.1.8 Responsible NLP Research - Reproducibility Checklist

In addition to many items from the “Reproducibility Checklist” which are already care-

fully addressed throughout the section and Appendix sections, we provide the remaining

130

Task
BERT
BASE

Sparsity
Prune
OFA

oBERT
(ours)

SQuAD
EM

81.42
90%
97%

79.83
-

81.43
76.90

MNLI
mm-acc

85.06
90%
97%

82.43
-

83.78
81.13

QQP
F1

88.00
90%
97%

87.72
-

87.81
86.97

Table A.5: Additional evaluation metrics for results presented in Table 3.2.

Layers Sparsity Unstructured 4-block +QAT

12
0%
80%
90%

82.71
82.08
81.12

82.71
81.46
80.14

81.99
80.57
78.84

6
0%
80%
90%

81.17
81.15
79.16

81.17
79.55
77.65

80.85
78.27
76.56

3
0%
80%
90%

76.62
75.62
73.61

76.62
74.07
71.36

76.06
72.70
70.00

Table A.6: Additional evaluation metric (exact-match) for results presented in Table 3.3.

Task Sparsity
oBERT
(ours)

Epochs 30 Epochs

SQuAD
F1, EM

80%
90%
97%

0.11, 0.03
0.13, 0.13
0.11, 0.17

MNLI
m, mm

80%
90%
97%

0.14, 0.13
0.05, 0.04
0.35, 0.22

QQP
acc, F1

80%
90%
97%

0.08, 0.08
0.04, 0.06
0.05, 0.08

Table A.7: Standard deviations for results presented in Table A.4.

details to facilitate the reproducibility of our results.

Scientific Artifacts Datasets. Our experiments use existing and well-established

131

Task Sparsity
oBERT
(ours)

SQuAD
F1, EM

90%
97%

0.13, 0.13
0.03, 0.14

MNLI
m, mm

90%
97%

0.08, 0.24
0.17, 0.35

QQP
acc, F1

90%
97%

0.06, 0.07
0.09, 0.18

Table A.8: Standard deviations for results presented in Table 3.2 and A.5.

Layers Sparsity
(%)

Compression
Method

F1 score F1 recall
(%)

Throughput
(items per sec.)

Speedup
DeepSparse

Model size
(gzip MB)

Compression
Ratio (w.r.t. gzip)

12 0 none 88.54 100.00 65.81 1.00 384.7 1.00
12 80 unstructured 89.04 100.56 222.66 3.38 173.1 2.22
12 90 unstructured 88.31 99.74 292.40 4.44 140.1 2.75
12 80 4-block+QAT 87.89 99.26 552.22 8.39 37.8 10.18
6 80 unstructured 88.20 99.62 419.68 6.38 128.3 3.00
6 90 unstructured 86.78 98.01 663.02 10.07 111.8 3.44
6 80 4-block+QAT 86.10 97.24 989.54 15.04 26.2 14.70
3 80 unstructured 84.08 94.96 737.62 11.21 105.9 3.63
3 90 unstructured 82.50 93.18 974.00 14.80 97.7 3.94
3 80 4-block+QAT 82.04 92.66 1892.27 28.75 20.3 18.92

Table A.9: Compression effects on model size and inference speed, evaluated at batch size
32 with sequence length 128 on SQuAD v1.1 dataset. Evaluated at the c5.12xlarge AWS
instance.

benchmarks for pre-training and fine-tuning LLMs. Each dataset was used without any addi-

tional forms of modifications. Given that we did not modify any datasets, we did not inspect

for personal, sensitive, or offensive content or perform any anonymization. For pre-training,

we make use of the Toronto Book Corpus (TBC) [226] 49 and the wikipedia.20200501.en [143] 50.

For fine-tuning we make use of SQuAD v1.1 [7] 51, Quora Duplicate Question Dataset (QQP)
52, and Multi-Genre Natural Language Inference (MNLI) [127] 53 datasets. All these datasets

are publicly available via HuggingFace datasets repository [125]. The terms of usage and

further details on each dataset can be found in their respective repositories.

Models. The model used as a starting point for all of our experiments is BERT, publicly

available via HuggingFace Hub 54. All other models presented in this section will be released

49https://huggingface.co/datasets/bookcorpus
50https://huggingface.co/datasets/wikipedia
51https://huggingface.co/datasets/squad
52https://huggingface.co/datasets/glue
53https://huggingface.co/datasets/glue
54https://huggingface.co/bert-base-uncased

132

in openly-available repositories along with their compression recipes, training metrics, and

hyper-parameters.

Dataset Statistics Dataset statistics are detailed in Table A.12.

Dataset Train Eval

SQuAD (examples) 87599 10570

MNLI (examples) 392702 19628

QQP (examples) 363,846 40,430

Wikipedia (words) 6078422 -

TBC (words) 74004228 -

Table A.10: Statistics for training and evaluation datasets

A.1.9 Computational Experiments

Upstream. All upstream runs are, in general, computationally expensive due to the large

batch sizes and huge datasets. In our experiments, we use 4x A100 40GB NVIDIA GPUs.

In this configuration, a single training epoch takes approximately 6 hours. Since the cost of

such a large compute instance is high, these experiments were only run with a single seed

and without major hyper-parameter exploration.

Downstream. Our downstream experiments use various GPU cards: 16GB V100, 11GB

RTX 2080 Ti, and 24GB RTX 3090. Each training epoch takes approximately 30 minutes,

so the 30 epoch runs take approximately 15 hours. We report the mean results of three runs

with different random seeds for these experiments.

DeepSparse inference. We pair our compressed models with DeepSparse [119], a publicly-

available sparsity-aware CPU inference engine. This CPU runtime can leverage structured

and unstructured sparsity and quantization to deliver high performance on commodity

CPUs. We ran DeepSparse on a 24-core Intel AWS c5.12xlarge server with 24 cores, 96

vCPUs, 192 GB of RAM, and an AVX-512 compatible instruction set. All models are

exported using the standard ONNX55 format.

A.1.10 Computational Packages

Our experiments build on publicly available libraries to ensure ease of reproduction and

extensibility. All of our implementations, training, and evaluation code are built on top of

55https://onnx.ai/

133

Figure A.8: The set of oBERTa language models follows a compounding compression
approach. First models are structurally pruned and further pre-trained using KD and a
RoBERTalarge teacher. Next, each model is pruned during additional pre-training to a
target sparsity. After pruning, the sparsity pattern is locked, and models are fine-tuned
with KD on specialized NLP tasks. During fine-tuning, models may be quantized for
additional improvements in inference efficiency.

HuggingFace’s Transformers 56 and Datasets 57 libraries, NeuralMagic’s SparseML 58 library

for model compression, and their DeepSparse 59 engine for efficient inference on commodity

CPUs.

A.2 OBERTA: IMPROVING SPARSE TRANSFER LEARNING VIA IMPROVED
INITIALIZATION, DISTILLATION, AND PRUNING REGIMES

A.2.1 Model Generation Approach

oBERTa models are generated in a multi-stage approach with details found in figure A.8

56https://github.com/huggingface/transformers
57https://github.com/huggingface/datasets
58https://github.com/neuralmagic/sparseml
59https://github.com/neuralmagic/deepsparse

134

Model Parameters Prunable Sparse Sparsity size (MB) Compression GZIP size (MB) Compression
oBERTabase 124,647,170 85,526,016 1,539 0.0% 474 1.00 435 1.00
oBERTabase Quantized 124,647,170 85,526,016 1,539 0.0% 119 3.98 85 5.12
oBERTabase 90% 124,647,170 85,526,016 76,442,738 89.4% 474 1.00 183 2.38
oBERTabase 90% Quantized 124,647,170 85,526,016 76,442,738 89.4% 119 3.98 42 10.36
oBERTabase 95% 124,647,170 85,526,016 80,689,466 94.3% 474 1.00 163 2.67
oBERTabase 95% Quantized 124,647,170 85,526,016 80,689,466 94.3% 119 3.98 37 11.76
oBERTaMEDIUM 82,119,938 43,058,688 1,538 0.0% 312 1.52 289 1.51
oBERTaMEDIUM Quantized 82,119,938 43,058,688 1,538 0.0% 78 6.08 53 8.21
oBERTaMEDIUM 90% 82,119,938 43,058,688 38,222,138 88.8% 312 1.52 161 2.70
oBERTaMEDIUM 90% Quantized 82,119,938 43,058,688 38,222,138 88.8% 78 6.08 33 13.18
oBERTaSMALL 60,856,322 21,825,024 1,538 0.0% 233 2.03 214 2.03
oBERTaSMALL Quantized 60,856,322 21,825,024 1,538 0.0% 60 7.90 39 11.15
oBERTaSMALL 90% 60,856,322 21,825,024 19,111,068 87.6% 233 2.03 149 2.92
oBERTaSMALL 90% Quantized 60,856,322 21,825,024 19,111,838 87.6% 60 7.90 30 14.50

Table A.11: Description of the oBERTa model family and their sparsity and size. Prunable
parameters are the sum of all non-embedding parameters in the model. Since sparsity
profiles are assigned at a module level, overall sparsity profiles do not perfectly match the
target 90% or 95% which are targeted.

A.2.2 Roberta and Training Methodology

RoBERTa [51] is a language model that can best be considered more robust and opti-

mized for the popular BERT model. While the models share architectures, their training

differs as RoBERTA uses a 160 GB corpus for 10 epochs compared to the 4GB one used

by BERT. As a result, the training time of RoBERTA is about 100 times higher than its

predecessor.

Given this high cost of training and the regular need for longer training when pruning a

model [138], we focus on compressing RoBERTa without following its expensive pre-training

regime. Our research leverages the popular open-source compression library SparseML60

to implement unstructured pruning, structured pruning, and quantization via quantization-

aware training. In all our experiments, we prune each network component independently

using GMP or Optimal BERT Surgeon (OBS) (Kurtic et al.). One exception is the embed-

dings layer, which we do not prune.

A.2.3 Model Details

Model details can be found in table A.11

A.2.4 Dataset Details

Dataset statistics are detailed in Table A.12.

60https://github.com/neuralmagic/sparseml

135

Dataset Train Eval

SQuAD v1.1 (examples) 87599 10570
SQuAD v2.0 (examples) 130319 11873

MNLI (examples) 392702 19628

QQP (examples) 363,846 40,430

IMDB (examples) 25000 25000

CONLL2003 (examples) 14041 3250

SST2 (examples) 67349 872

Wikipedia (words) 6078422 -

TBC (words) 74004228 -

Table A.12: Statistics for training and evaluation datasets

A.2.5 Teacher Models

Performance of the RoBERTabaseand RoBERTalarge models on our sparse transfer datasets.

We explore the optimal hyperparameters relative to performance in published results as

shown in table A.13 and A.14

Model Training Epochs Batch Size Learning Rate Weight Decay Warmup Target Metric Target Score Actual Recall
SQUAD V1.1 3 16 1.00E-05 0 0 F1 90.40 92.15 101.94%
SQUAD V2.0 3 16 3.00E-05 0 0 F1 82.91 83.53 100.74%
QQP 5 16 2.00E-05 0 0 ACC 91.90 91.52 99.59%
MNLI 3 16 1.00E-05 0 0 ACC 87.60 87.88 100.31%
SST-2 3 16 2.00E-05 0 0 ACC 94.80 94.61 99.80%
CONLL2003 3 16 3.00E-05 0 0 ACC 99.10 99.29 100.19%
IMDB 3 16 1.00E-05 0 0 ACC 94.67 95.24 100.60%

Table A.13: Training parameters along with performance metrics and the recovery vs. the
published performance of the same model for the RoBERTa base model

Model Training Epochs Batch Size Learning Rate Weight Decay Warmup Target Metric Target Score Actual Recall

SQUAD V1.1 3 16 1.00E-05 0 0 F1 94.50 94.62 100.12%

SQUAD V2.0 3 16 1.00E-05 0 0 F1 89.40 89.14 99.71%

QQP 3 16 1.00E-05 0 0 ACC 92.20 91.76 99.52%

MNLI 3 16 1.00E-05 0 0 ACC 90.20 90.61 100.45%

SST-2 3 16 1.00E-05 0 0 ACC 96.40 96.22 99.81%

CONLL2003 3 16 3.00E-05 0 0 ACC 99.10 99.39 100.29%

IMDB 3 16 1.00E-05 0 0 ACC 94.67 96.12 101.53%

Table A.14: Training parameters along with performance metrics and the recovery vs. the
published performance of the same model for the RoBERTa large model

136

5 Epochs

Datasets BookCorpus & English Wikipedia

Batch size 256

Initial learning rate 5e-4
Learning rate schedule linear decay with rewinds
Learning rate rewinds periodic every 0.5 epochs

Max sequence length 512
Weight decay 0.01

Knowledge Distillation
(hardness, temperature)

(1.0, 5.5)

Student model dense oBERTa-* model
Teacher model RoBERTalarge

Pruning frequency 100x per epoch

Initial Sparsity 0.7 for 12 layer model, 0.5 for the 6-layer, and 0.3 for the 3-layer

Table A.15: Upstream pruning hyper-parameters.

A.2.6 Upstream Pruning

Following the findings that more extensive teachers distill better [51] and our experiments,

we use both RoBERTabaseand RoBERTalarge as teachers eventually find the large model works

better. Using this teacher, we use the parameters shown in table A.15 to prune the models

for oBERTa. This same set of parameters is applied to the structurally pruned models, but

there is no induced sparsity.

A.2.7 Sparse Transfer Hyper-Parameters

Our work aims not to produce the highest possible performance of a sparse language

model. Instead, we aim to make light language models that perform well on various tasks

with minimal hyperparameter optimization. As a result, in all of our experiments, we lever-

age the parameters shown in C.2 and A.17 and perform a grid search over them.

A.2.8 Learning Rate

In our exploration of sparse transfer learning, we perform a wide study on the impact of

the optimal learning rate for each task and each model in the oBERTa family. The results

as shown in table A.18

137

10 Epochs

Initial learning rate 2.1e-4,1.9e-4,1.7e-4,1.5e-4,1.3e-4,1.1e-4,9e-5,7e-5,5e-5,3e-5,2e-5,1e-5
Learning rate schedule linear decay to 0

Batch size 12

Weight Decay 0.0, 0.01, 0.05, 0.1

Knowledge Distillation hardness 1.0, 0.0

Frozen Embeddings 1.0, 0.0

Knowledge Distillation temperature 7.0

Knowledge Distillation Teacher RoBERTabase, RoBERTalarge

Table A.16: Sparse-transfer learning hyper-parameters used to fine-tune upstream-pruned
models at downstream tasks. Each Experiment tunes this set of parameters to find a
task-specific optimal combination.

20 Epochs

Initial learning rate 2.1e-4,1.9e-4,1.7e-4,1.5e-4,1.3e-4,1.1e-4,9e-5,7e-5,5e-5,3e-5,2e-5,1e-5
Learning rate schedule linear decay to 0. Rewind to 5e-5 for QAT at epoch 10

Freeze Batch Norm Epoch 18

Batch size 12

Weight Decay 0.0, 0.01, 0.05, 0.1

Knowledge Distillation hardness 1.0, 0.0

Frozen Embeddings 1.0, 0.0

Frozen Embeddings Schedule Frozen until epoch 10, unfrozen for QAT

Knowledge Distillation temperature 7.0

Knowledge Distillation Teacher RoBERTabase, RoBERTalarge

Table A.17: Sparse-transfer learning with Quantization hyper-parameters used to fine-tune
upstream-pruned models at downstream tasks. Each Experiment tunes this set of
parameters to find a task-specific optimal combination.

Optimal Learning Rate

model SQUAD SQUAD V2 MNLI QQP IMDB SST2 CONLL2003

RoBERTabase 1.00E-05 3.00E-05 1.00E-05 2.00E-05 1.00E-05 2.00E-05 3.00E-05

RoBERTalarge 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 3.00E-05

oBERTabase 1.00E-05 1.00E-05 1.00E-05 2.00E-05 1.00E-05 2.00E-05 3.00E-05

oBERTabase 90% 1.50E-04 1.50E-04 7.00E-05 1.70E-04 1.30E-04 9.00E-05 1.50E-04

oBERTabase 95% 1.50E-04 1.30E-04 9.00E-05 2.10E-04 1.30E-04 9.00E-05 5.00E-05

oBERTaMEDIUM 5.00E-05 5.00E-05 2.00E-05 3.00E-05 3.00E-05 2.00E-05 3.00E-05

oBERTaMEDIUM 90% 1.50E-04 1.30E-04 1.50E-04 1.50E-04 5.00E-05 1.50E-04 1.50E-04

oBERTaSMALL 1.50E-04 1.50E-04 3.00E-05 5.00E-05 3.00E-05 5.00E-05 3.00E-05

oBERTaSMALL 90% 1.50E-04 1.50E-04 2.10E-04 2.10E-04 1.50E-04 2.10E-04 1.90E-04

Table A.18: Sparse-transfer learning with Quantization hyper-parameters used to fine-tune
upstream-pruned models at downstream tasks. Each Experiment tunes this set of
parameters to find a task-specific optimal combination.

138

A.2.9 Knowledge Distillation

In our exploration of sparse transfer learning, we perform a wide study on the im-

pact of knowledge distillation. Across tasks, we look at the impact using no teacher,

RoBERTabaseand RoBERTalarge as shown in tables A.19,A.20,A.21,A.22,A.23,A.24

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52% N/A N/A
oBERTabase 90% 91.97 92.78 92.55
oBERTabase 95% 91.40 91.17 91.514
oBERTaMEDIUM 90.94 91.86 91.78
oBERTaMEDIUM 90% 87.16 87.16 89.56
oBERTaSMALL 89.56 88.65 90.83
oBERTaSMALL 90% 85.58 89.22 89.45

Table A.19: Impact of knowledge distillation on the accuracy (matched) MNLI Dataset
across model sizes for the various sizes of oBERTa as compared to the regularly trained
baseline

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52 N/A N/A
oBERTabase 90% 63.18 91.01 90.93
oBERTabase 95% 90.46 90.45 90.72
oBERTaMEDIUM 90.75 90.96 90.96
oBERTaMEDIUM 90% 89.93 90.41 89.82
oBERTaSMALL 86.63 87.34 87.65
oBERTaSMALL 90% 88.72 89.40 87.50

Table A.20: Impact of knowledge distillation on the accuracy QQP Dataset across model
sizes for the various sizes of oBERTa as compared to the regularly trained baseline

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52 N/A N/A
oBERTabase 90% 91.97 92.78 92.55
oBERTabase 95% 91.4 91.17 91.514
oBERTaMEDIUM 90.94 91.86 91.78
oBERTaMEDIUM 90% 87.16 87.16 89.56
oBERTaSMALL 89.56 88.65 90.83
oBERTaSMALL 90% 85.58 89.22 89.45

Table A.21: Impact of knowledge distillation on the accuracy SST-2 Dataset across model
sizes for the various sizes of oBERTa as compared to the regularly trained baseline

139

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52% N/A N/A
oBERTabase 90% 99.17 99.08 99.11
oBERTabase 95% 98.89 98.47 97.51
oBERTaMEDIUM 99.21 99.16 99.19
oBERTaMEDIUM 90% 99.01 98.8 98.79
oBERTaSMALL 99.05 98.95 98.94
oBERTaSMALL 90% 98.88 98.55 98.55

Table A.22: Impact of knowledge distillation on the accuracy on the CONLL2003 Dataset
across model sizes for the various sizes of oBERTa as compared to the regularly trained
baseline

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52% N/A N/A
oBERTabase 90% 89.01 90.86 90.92
oBERTabase 95% 87.06 89.84 89.21
oBERTaMEDIUM 84.36 88.20 85.74
oBERTaMEDIUM 90% 84.71 89.26 88.61
oBERTaSMALL 82.00 80.77 77.08
oBERTaSMALL 90% 73.31 84.66 83.13

Table A.23: Impact of knowledge distillation on the F1 SQUAD v1.1 Dataset across model
sizes for the various sizes of oBERTa as compared to the regularly trained baseline

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52% N/A N/A
oBERTabase 90% 75.57852204 80.25256971 81.32561567
oBERTabase 95% 72.61 77.67 77.98
oBERTaMEDIUM 69.42634 70.97328 71.55996
oBERTaMEDIUM 90% 68.25281 76.02975 76.64135
oBERTaSMALL 66.8281 62.9573 63.1224
oBERTaSMALL 90% 55.3959 70.0796 70.7913

Table A.24: Impact of knowledge distillation on the F1 SQUAD v2.0 Dataset across model
sizes for the various sizes of oBERTa as compared to the regularly trained baseline

A.2.10 Freezing Embeddings

In our exploration of sparse transfer learning, we perform a wide study on the impact

of freezing the embeddings during finetuning. Across tasks, we look at the impact of frozen

and unfrozen embeddings as shown in tables A.25,A.26,A.27,A.28,A.29, and A.30. Besides

question answering, we do not find a strong trend with the impact of frozen embeddings. In

some tasks, sparse and dense models perform better with frozen embeddings while not for

others. Focusing on question answering, by using frozen embeddings dense models see large

losses in F1 score and the opposite can be seen for pruned models.

140

model Frozen Unfrozen
oBERTabase (Target) N/A 87.88%
oBERTabase 90% 84.50 83.81
oBERTabase 95% 83.91 83.41
oBERTaMEDIUM 84.37 83.32
oBERTaMEDIUM 90% 81.61 77.00
oBERTaSMALL 80.24 80.36
oBERTaSMALL 90% 78.46 74.25

Table A.25: Impact of frozen vs trained embeddings on the accuracy (matched) MNLI
Dataset across model sizes for the various sizes of oBERTa as compared to the
uncompressed baseline

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 90.93% 90.99%
oBERTabase 95% 90.72% 90.85%
oBERTaMEDIUM 90.96% 91.35%
oBERTaMEDIUM 90% 89.82% 90.48%
oBERTaSMALL 90.59% 90.72%
oBERTaSMALL 90% 89.40% 89.74%

Table A.26: Impact of frozen vs trained embeddings on the accuracy on QQP across model
sizes for the various sizes of oBERTa as compared to the uncompressed baseline

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 92.55 91.74
oBERTabase 95% 91.514 91.4
oBERTaMEDIUM 91.78 92.89
oBERTaMEDIUM 90% 89.56 88.76
oBERTaSMALL 90.83 90.48
oBERTaSMALL 90% 89.45 89.34

Table A.27: Impact of frozen vs trained embeddings on the accuracy SST2 Dataset across
model sizes for the various sizes of oBERTa as compared to the uncompressed baseline

A.2.11 Inference Benchmarks

We provide full results for our experiments in benchmarking the impact of compression

on inference efficiency as shown in tables A.38,A.36,A.35,A.31,A.33,A.32,A.37,A.37

141

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 97.51 98.55
oBERTabase 95% 99.11 99.13
oBERTaMEDIUM 99.19 99.18
oBERTaMEDIUM 90% 98.79 98.9
oBERTaSMALL 98.94 98.94
oBERTaSMALL 90% 98.55 98.69

Table A.28: Impact of frozen vs trained embeddings on the accuracy on CONLL2003
Dataset across model sizes for the various sizes of oBERTa as compared to the
uncompressed baseline

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 90.92 83.99
oBERTabase 95% 89.21 87.08
oBERTaMEDIUM 85.74 89.95
oBERTaMEDIUM 90% 88.61 86.63
oBERTaSMALL 77.08 84.64
oBERTaSMALL 90% 83.13 77.43

Table A.29: Impact of frozen vs trained embeddings on SQUAD v1.1 F1 across model sizes
for the various sizes of oBERTa as compared to the uncompressed baseline

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 71.56 78.05
oBERTabase 95% 81.33 78.45
oBERTaMEDIUM 77.98 76.86
oBERTaMEDIUM 90% 76.64 72.77
oBERTaSMALL 71.32 63.12
oBERTaSMALL 90% 70.79 59.38

Table A.30: Impact of frozen vs trained embeddings on the SQUAD v2.0 Dataset across
model sizes for the various sizes of oBERTa as compared to the uncompressed baseline

A.2.12 Limitations

While much of our work has focused on showcasing the broad usability of compressed

language models, they are not without fault. While our experiments focus on the compression

of RoBERTa, the size of its training dataset makes complete exploration of the ability of

pruning during pretraining somewhat limited. The work in the paper shows the ability to

compress RoBERTa on a smaller pretraining dataset but does not contrast it with the impact

142

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 16.69 1.00 59.90 59.82 1.02
oBERTabase Quantized 51.68 3.10 19.34 19.28 0.58
oBERTabase 90% 54.87 3.29 18.21 18.15 0.31
oBERTabase 90% Quantized 68.70 4.12 14.55 14.50 0.20
oBERTabase 95% 145.57 8.72 6.86 6.86 0.11
oBERTabase 95% Quantized 78.90 4.73 12.66 12.68 0.31
oBERTaMEDIUM 32.78 1.96 30.49 30.44 1.19
oBERTaMEDIUM Quantized 103.47 6.20 9.65 9.60 0.57
oBERTaMEDIUM 90% 106.01 6.35 9.42 9.34 0.28
oBERTaMEDIUM 90% Quantized 149.25 8.94 6.69 6.65 0.42
oBERTaSMALL 64.93 3.89 15.39 15.31 0.66
oBERTaSMALL Quantized 208.09 12.47 4.80 4.78 0.28
oBERTaSMALL 90% 203.95 12.22 4.89 4.86 0.33
oBERTaSMALL 90% Quantized 270.63 16.21 3.69 3.68 0.25

Table A.31: Inference performance of the oBERTa model family using a batch size of 1, 24
cores, and a sequence length of 384

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 19.55 1.00 818.23 811.93 15.52
oBERTabase Quantized 83.92 4.29 190.65 189.55 4.21
oBERTabase 90% 74.29 3.80 215.35 214.31 2.47
oBERTabase 90% Quantized 137.83 7.05 116.07 115.43 2.56
oBERTabase 95% 89.07 4.56 179.62 178.92 3.19
oBERTabase 95% Quantized 160.68 8.22 99.56 98.91 2.63
oBERTaMEDIUM 38.95 1.99 410.73 408.13 6.11
oBERTaMEDIUM Quantized 157.12 8.04 101.82 101.27 2.21
oBERTaMEDIUM 90% 144.95 7.41 110.37 109.62 1.56
oBERTaMEDIUM 90% Quantized 251.32 12.86 63.65 63.40 1.76
oBERTaSMALL 77.49 3.96 206.46 205.75 2.07
oBERTaSMALL Quantized 276.10 14.12 57.94 57.43 1.63
oBERTaSMALL 90% 281.57 14.40 56.81 56.73 0.64
oBERTaSMALL 90% Quantized 417.35 21.35 38.32 38.01 1.55

Table A.32: Inference performance of the oBERTa model family using a batch size of 16,
24 cores, and a sequence length of 384

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 19.02 1.00 3365.11 3352.63 29.49
oBERTabase Quantized 84.80 4.46 754.73 749.38 18.69
oBERTabase 90% 72.22 3.80 886.13 881.75 10.65
oBERTabase 90% Quantized 140.14 7.37 456.67 453.59 11.03
oBERTabase 95% 88.35 4.64 724.41 720.43 10.85
oBERTabase 95% Quantized 162.76 8.56 393.21 390.45 12.15
oBERTaMEDIUM 37.94 1.99 1686.85 1685.03 8.09
oBERTaMEDIUM Quantized 160.48 8.44 398.80 396.47 9.27
oBERTaMEDIUM 90% 130.02 6.84 492.22 486.90 9.64
oBERTaMEDIUM 90% Quantized 259.51 13.64 246.61 244.54 7.13
oBERTaSMALL 75.81 3.99 844.15 841.30 8.72
oBERTaSMALL Quantized 267.70 14.07 239.06 237.86 7.02
oBERTaSMALL 90% 278.93 14.67 229.43 228.41 3.43
oBERTaSMALL 90% Quantized 455.71 23.96 140.43 139.81 5.40

Table A.33: Inference performance of the oBERTa model family using a batch size of 64,
24 cores, and a sequence length of 384

of compression on the full dataset.

A second limitation of our work is the high computational demand required for creating

public domain sparse language models. Despite amortizing the cost of compression to a few

pretraining training regimes, the reduction of other language models like ALBERT [54] or

XLM-R [227] require completely new training, pruning, and transfer experiments.

143

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 4.89 1.00 204.65 204.93 1.82
oBERTabase Quantized 20.01 4.09 49.95 49.88 0.66
oBERTabase 90% 17.60 3.60 56.82 56.70 0.72
oBERTabase 90% Quantized 37.50 7.67 26.66 26.61 0.38
oBERTabase 95% 20.15 4.12 49.62 49.60 0.54
oBERTabase 95% Quantized 46.02 9.41 21.72 21.70 0.31
oBERTaMEDIUM 9.59 1.96 104.28 104.33 0.90
oBERTaMEDIUM Quantized 41.23 8.43 24.25 24.18 0.33
oBERTaMEDIUM 90% 38.30 7.83 26.10 26.05 0.41
oBERTaMEDIUM 90% Quantized 73.28 14.99 13.64 13.60 0.19
oBERTaSMALL 19.31 3.95 51.78 51.74 0.35
oBERTaSMALL Quantized 75.81 15.50 13.18 13.18 0.19
oBERTaSMALL 90% 68.70 14.05 14.55 14.50 0.20
oBERTaSMALL 90% Quantized 145.57 29.77 6.86 6.86 0.11

Table A.34: Inference performance of the oBERTa model family using a batch size of 1, 4
cores, and a sequence length of 384

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 5.14 1.00 3113.07 3113.92 19.89
oBERTabase Quantized 22.14 4.31 722.72 719.24 11.40
oBERTabase 90% 17.15 3.34 932.97 931.21 5.76
oBERTabase 90% Quantized 39.03 7.59 409.90 408.71 4.64
oBERTabase 95% 19.80 3.85 808.16 806.80 4.15
oBERTabase 95% Quantized 46.54 9.06 343.75 342.75 4.12
oBERTaMEDIUM 10.24 1.99 1563.00 1557.90 16.53
oBERTaMEDIUM Quantized 42.82 8.33 373.61 372.88 4.05
oBERTaMEDIUM 90% 33.69 6.56 474.88 474.25 3.64
oBERTaMEDIUM 90% Quantized 76.10 14.81 210.24 209.41 2.45
oBERTaSMALL 20.41 3.97 783.81 782.99 6.59
oBERTaSMALL Quantized 79.57 15.48 201.07 200.60 2.12
oBERTaSMALL 90% 72.92 14.19 219.40 218.84 2.53
oBERTaSMALL 90% Quantized 139.50 27.14 114.68 114.45 1.53

Table A.35: Inference performance of the oBERTa model family using a batch size of 16, 4
cores, and a sequence length of 384

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 5.06 1.00 12655.34 12680.81 57.78
oBERTabase Quantized 21.88 4.32 2924.89 2921.95 31.78
oBERTabase 90% 17.18 3.40 3724.72 3724.23 15.27
oBERTabase 90% Quantized 37.44 7.40 1709.44 1699.64 26.97
oBERTabase 95% 22.13 4.37 2892.15 2893.08 22.94
oBERTabase 95% Quantized 43.94 8.68 1456.53 1451.76 20.45
oBERTaMEDIUM 10.21 2.02 1567.70 1562.90 14.53
oBERTaMEDIUM Quantized 42.74 8.45 374.35 373.15 4.00
oBERTaMEDIUM 90% 33.99 6.72 470.67 469.99 3.58
oBERTaMEDIUM 90% Quantized 75.64 14.95 211.53 210.80 2.61
oBERTaSMALL 20.42 4.03 783.67 783.29 5.16
oBERTaSMALL Quantized 79.44 15.70 201.40 201.43 2.90
oBERTaSMALL 90% 71.50 14.13 223.77 223.41 1.78
oBERTaSMALL 90% Quantized 139.55 27.58 114.65 114.48 1.53

Table A.36: Inference performance of the oBERTa model family using a batch size of 64, 4
cores, and a sequence length of 384

A.2.13 Responsible NLP Research - Reproducibility Checklist

Datasets. We experiment with well-established benchmarks with usage in many broad

domains. We do not perform any modification or augmentation in any dataset. Since

datasets are not modified, we did not look for personal or sensitive content.

In our pretraining experiments, we leverage the Toronto Book Corpus (TBC) [226]61 and the

61https://huggingface.co/datasets/bookcorpus

144

Model Throughput (items/sec) Speedup vs BERT-Base Speedup vs BERT-Large Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
bertbase 4.923 1.00 5.65 203.1165 202.7077 1.3646
bert-large 0.8706 0.18 1.00 1148.6105 1145.145 9.5526
oBERTabase 4.89 0.99 5.61 204.65 204.93 1.82
oBERTabase Quantized 20.01 4.07 22.99 49.95 49.88 0.66
oBERTabase 90% 17.60 3.57 20.21 56.82 56.70 0.72
oBERTabase 90% Quantized 37.50 7.62 43.07 26.66 26.61 0.38
oBERTabase 95% 20.15 4.09 23.14 49.62 49.60 0.54
oBERTabase 95% Quantized 46.02 9.35 52.86 21.72 21.70 0.31
oBERTaMEDIUM 9.59 1.95 11.01 104.28 104.33 0.90
oBERTaMEDIUM Quantized 41.23 8.37 47.36 24.25 24.18 0.33
oBERTaMEDIUM 90% 38.30 7.78 43.99 26.10 26.05 0.41
oBERTaMEDIUM 90% Quantized 73.28 14.89 84.18 13.64 13.60 0.19
oBERTaSMALL 19.31 3.92 22.18 51.78 51.74 0.35
oBERTaSMALL Quantized 75.81 15.40 87.07 13.18 13.18 0.19
oBERTaSMALL 90% 68.70 13.95 78.91 14.55 14.50 0.20
oBERTaSMALL 90% Quantized 145.57 29.57 167.21 6.86 6.86 0.11
pruneOFA-large 80% Quantized 12.7315 2.59 14.62 78.5322 78.3961 0.4826
prunedOFA-large 90% Quantized 11.7265 2.38 13.47 85.2647 85.1616 0.4292
obert-large 0.876 0.18 1.01 1141.5707 1138.5756 9.0121
obert-large 95% 7.508 1.53 8.62 133.1785 132.9672 1.0091
obert-large 95% Quantized 16.8077 3.41 19.31 59.4828 59.322 0.6445
pruneBERT 17.60 3.57 20.21 56.82 56.70 0.72
obert-large 97% 8.0414 1.63 9.24 124.3431 124.1421 1.0249
obert-large 97% Quantized 15.8631 3.22 18.22 63.0278 62.9979 0.6018
obertbase 90% 18.2881 3.71 21.01 54.6688 54.5896 0.5476
obertbase 90% Quantized 34.2797 6.96 39.37 29.1616 29.0977 0.3156
obertbase 95% 25.1818 5.12 28.92 39.6997 39.5986 0.5805
obertbase 95% Quantized 40.6387 8.25 46.68 24.5986 24.5222 0.3231

Table A.37: Inference performance of the other sparse models using a batch size of 1, 4
cores, and a sequence length of 384 comparing the oBERTa models to previous sparse
language models such as pruneOFA [137] PruneBERT [66] and oBERT [138]

Wikipedia [143]62. For fine-tuning we make use of SQuAD v1.1 [7] 63, SQuAD v2.0 [160] 64,

Quora Duplicate Question Dataset (QQP) 65, and Multi-Genre Natural Language Inference

(MNLI) [127] 66, Large Movie Review Dataset (IMDB) [163]67, Stanford Sentiment Treebank

(SST-2) [161]68, and the shared task of CoNLL-2003 concerns language-independent named

entity recognition (CONLL-2003) [164]69datasets.

Models. The model used as a starting point for all our experiments is RoBERta, publicly

available via HuggingFace Hub 70. All other models presented in this paper will be released

in openly-available repositories along with their compression recipes, training metrics, and

hyper-parameters.

A.2.14 Computational Experiments

Upstream. During upstream pruning, due to the large size of language models and their

associated teachers, we leverage 4x A100 40GB NVIDIA GPUs. We train for five epochs; an

62https://huggingface.co/datasets/wikipedia
63https://huggingface.co/datasets/squad
64https://huggingface.co/datasets/squadv2
65https://huggingface.co/datasets/glue
66https://huggingface.co/datasets/glue
67https://huggingface.co/datasets/imdb
68https://huggingface.co/datasets/glue
69https://huggingface.co/datasets/conll2003
70https://huggingface.co/bert-base-uncased

145

Vs. BERT-Base Vs. BERT-Large
Model F1 Recovery Speed up Recovery Speed up
BERTbase 88.55 100.00% 1.00 97.74% 5.65
BERT-large 90.60 102.32% 0.18 100.00% 1.00
oBERTabase 92.20 104.12% 0.99 101.77% 5.61
oBERTabase Quantized 93.18 105.23% 4.07 102.85% 22.99
oBERTabase 90% 91.00 102.77% 3.57 100.44% 20.21
oBERTabase 90% Quantized 89.46 101.03% 7.62 98.74% 43.07
oBERTabase 95% 89.84 101.46% 4.09 99.16% 23.14
oBERTabase 95% Quantized 88.40 99.83% 9.35 97.57% 52.86
oBERTaMEDIUM 90.36 102.04% 1.95 99.74% 11.01
oBERTaMEDIUM Quantized 90.37 102.06% 8.37 99.75% 47.36
oBERTaMEDIUM 90% 89.26 100.80% 7.78 98.52% 43.99
oBERTaMEDIUM 90% Quantized 86.93 98.17% 14.89 95.95% 84.18
oBERTaSMALL 84.87 95.84% 3.92 93.68% 22.18
oBERTaSMALL Quantized 84.82 95.79% 15.40 93.62% 87.07
oBERTaSMALL 90% 84.66 95.61% 13.95 93.45% 78.91
oBERTaSMALL 90% Quantized 78.71 88.89% 29.57 86.88% 167.21
pruneOFA-large 80% Quantized 90.30 101.98% 2.59 99.67% 14.62
pruneOFA-large 90% Quantized 89.96 101.59% 2.38 99.29% 13.47
oBERT-large 95% 90.19 101.85% 1.53 99.55% 1.01
oBERT-large 95% Quantized 90.21 101.87% 3.41 99.57% 8.62
pruneBERT 84.90 95.88% 3.41 93.71% 19.31
oBERT-large 97% 90.18 101.84% 13.05 99.54% 73.82
oBERT-large 97% Quantized 90.13 101.78% 1.63 99.48% 9.24
oBERTbase 90% 88.47 99.91% 3.22 97.65% 18.22
oBERTbase 90% Quantized 88.00 99.38% 3.71 97.13% 21.01
oBERTbase 95% 88.19 99.59% 6.96 97.34% 39.37
oBERTbase 95% Quantized 88.11 99.50% 5.12 97.25% 28.92

Table A.38: Speedups of the oBERTa-family compared to existing published sparse models
compared to the performance of BERTbase and BERT-large. Speedup measures the
reduction in latency of MS/batch.

entire training and pruning run takes approximately 72 hours. Since the cost of such a large

compute instance is high, these experiments were only run with a single seed and without

major hyper-parameter exploration.

Sparse-Transfer Our experimentation on finetuning our compressed models uses the

workhorse 16GB V100. Our sparse-transfer datasets vary significantly in size, and as a

result, so do experiments. Finetuning for CONL2003 takes less than 10 minutes, while

larger datasets like QQP take about 24 hours. Due to the number of datasets we evaluate

and the number of models in the oBERTa family, we only perform experimentation with a

146

single fixed seed.

DeepSparse inference. We pair our compressed models with DeepSparse [119], a publicly-

available sparsity-aware CPU inference engine. All models are exported using the standard

ONNX71 format. For our competitive benchmarking against existing compressed language

models, we leverage the model representations shared in the SparseZoo 72. This approach

means that older models, such as oBERT, may have had less optimized ONNA exports. We

believe this difference in exportation causes nearly 4x improvement in the performance of

oBERTa base vs. bert-base.

A.2.15 Computational Packages

All of our experimentation is done using public libraries and datasets to ensure extensi-

bility and reproducibility. Our investigation is done using NeuralMagic’s SparseML 73, which

has specialized integration with HuggingFace’s Transformers 74 and Datasets 75 libraries.

71https://onnx.ai/
72https://sparsezoo.neuralmagic.com/
73https://github.com/neuralmagic/sparseml
74https://github.com/huggingface/transformers
75https://github.com/huggingface/datasets

147

APPENDIX B: ROBUST AND EFFICIENT SEMANTIC RETRIEVAL

B.1 QUICK DENSE RETRIEVERS CONSUME KALE: POST TRAINING
KULLBACK LEIBLER ALIGNMENT OF EMBEDDINGS FOR ASYMMETRICAL
DUAL ENCODERS

B.1.1 Asymmetrical Dense Retrieval

the impact of structural pruning with asymmetrical dense retrieval can be found in table

B.1. Similar to other works studying the use of knowledge distillation found [66], the use of

distillation improves performance by a non-negligible level.

layersq layersd Top 20 Impact Top 100 Impact Top 200 Impact
12 12 79.86% 0.00% 85.84% 0.00% 88.42% 0.00%

6distilbert 6distilbert 73.88% -7.49% 84.74% -1.29% 87.26% -1.31%
6KD 12 73.99% -7.35% 84.32% -1.77% 86.65% -2.00%
6KD 9 71.63% -10.30% 83.16% -3.12% 85.82% -2.94%
6KD 6 71.00% -11.10% 82.35% -4.06% 85.48% -3.32%
6KD 3 68.42% -14.32% 80.94% -5.71% 84.24% -4.73%
6KD 2 68.39% -14.36% 80.58% -6.13% 84.02% -4.98%
6KD 1 56.62% -29.10% 72.24% -15.84% 77.81% -12.00%

3KD 12 71.72% -10.20% 83.21% -3.06% 85.90% -2.85%
3KD 9 68.95% -13.66% 81.75% -4.77% 84.79% -4.10%
3KD 6 68.09% -14.74% 81.52% -5.03% 84.76% -4.13%
3KD 3 65.84% -17.55% 79.58% -7.29% 83.41% -5.67%
3KD 2 66.81% -16.34% 79.50% -7.38% 82.71% -6.45%
3KD 1 54.46% -31.81% 71.44% -16.77% 76.59% -13.38%

12 6KD 78.78% -1.35% 85.84% 0.01% 87.45% -1.10%
9 6KD 77.26% -3.26% 85.18% -0.77% 87.34% -1.22%
6 6KD 76.45% -4.26% 84.96% -1.03% 87.06% -1.53%
6KD 6KD 75.04% -6.03% 85.15% -0.80% 87.45% -1.10%
3 6KD 74.49% -6.73% 84.24% -1.87% 86.54% -2.13%
3KD 6KD 77.01% -3.57% 85.76% -0.09% 87.42% -1.13%
2 6KD 74.43% -6.80% 83.68% -2.51% 86.32% -2.38%
1 6KD 68.09% -14.74% 79.22% -7.71% 83.19% -5.92%

12 3KD 76.45% -4.26% 84.49% -1.58% 86.70% -1.94%
9 3KD 76.12% -4.68% 84.29% -1.80% 86.26% -2.44%
6 3KD 75.15% -5.89% 83.43% -2.80% 86.45% -2.22%
6KD 3KD 77.40% -3.09% 85.37% -0.54% 87.48% -1.06%
3KD 3KD 73.32% -8.18% 83.43% -2.80% 86.20% -2.51%
3 3KD 71.88% -9.99% 83.66% -2.54% 86.37% -2.32%
2 3KD 72.22% -9.56% 81.93% -4.55% 85.08% -3.77%
1 3KD 67.31% -15.71% 79.25% -7.67% 82.77% -6.39%

Table B.1: Impact of Structural pruning with knowledge distilled variants before
fine-tuning on Retrieval Accuracy on NQ passage retrieval dataset

148

Parameter Possible Values

Training Length 3,40 Epochs
Initial learning rate 1e-5, 5e-5, 5e-6
Learning rate schedule Linear
Batch size 8,128,
Negative Passages 1,8

Table B.2: Hyperparmaters used to train bi-encoder models for retrieval

Parameter Possible Values

Training Length 1,10,100 Epochs
Initial learning rate 5e-5, 5e-4, 5e-6
Learning rate schedule constant
Batch size 4,64,256
Loss Temperature 1, 10

Table B.3: Hyperparmaters used by KALE for aligning the embeddings of a pruned model
with its uncompressed target.

B.1.2 Dense Retrieval and KALE Hyperparameters

Our experiments focus on minimal hyperparameter optimization. For training of the

dense retrievers, we use the datasets described in B.2 where the shorter training lengths

and smaller batch sizes correspond to MSMARCO. In contrast, the other datasets leverage

longer and larger training. For using KALE, we perform task-specific grid search using the

parameters described by C.2.

B.1.3 KALE

As shown in table B.4, we explore the impact of KALE for the NQ dataset, in table

B.5, we explore the impact on TriviaQA, in table B.6, we evaluate the MSARCO passage

retrieval, in table B.7 we explore Scifacts, and in table B.8 we explore SQUAD. The impact

of pruning and KALE is fairly consistent across datasets, but there are larger losses on some

smaller datasets, such as SCIfacts and SQUAD.

B.1.4 KALE and Asymmetric Training

Building on the impact of asymmetry and KALE, we explore comparing them across

various datasets as shown in B.9, B.10,B.11, B.12, B.13.

149

Layers KALE Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 79.86% 0.00% 85.84% 0.00% 88.42% 0.00%
9 N 68.70% -13.97% 79.97% -6.84% 83.55% -5.51%
9 Y 77.40% -3.08% 84.90% -1.10% 87.04% -1.56%
6 N 50.69% -36.53% 68.20% -20.55% 73.52% -16.85%
6 Y 75.51% -5.45% 83.68% -2.52% 86.18% -2.53%
3 N 27.34% -65.77% 43.88% -48.88% 51.19% -42.11%
3 Y 72.69% -8.98% 81.14% -5.48% 84.76% -4.14%
2 N 27.81% -65.18% 46.90% -45.36% 54.54% -38.32%
2 Y 71.83% -10.06% 81.94% -4.54% 84.54% -4.39%
1 N 4.57% -94.28% 12.22% -85.76% 15.87% -82.05%
1 Y 58.86% -26.30% 71.33% -16.90% 75.65% -14.44%

Table B.4: Impact of structural pruning with and without KALE on the NQ retrieval
dataset

Layers KALE Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 79.43% 0.00% 85.84% 0.00% 86.63% 0.00%
9 N 71.16% -10.41% 79.97% -5.35% 83.13% -4.04%
9 Y 77.46% -2.48% 84.90% -1.28% 85.95% -0.78%
6 N 53.98% -32.04% 68.20% -18.91% 74.05% -14.52%
6 Y 75.37% -5.11% 83.68% -2.38% 85.25% -1.59%
3 N 28.99% -63.50% 43.88% -43.84% 55.62% -35.80%
3 Y 73.17% -7.88% 81.14% -3.95% 84.04% -2.99%
2 N 33.98% -57.22% 46.90% -39.29% 58.52% -32.45%
2 Y 72.39% -8.86% 81.94% -4.47% 83.64% -3.45%
1 N 3.15% -96.03% 12.22% -90.02% 12.49% -85.58%
1 Y 63.04% -20.63% 71.33% -11.33% 79.23% -8.54%

Table B.5: Impact of structural pruning with and without KALE on the TriviaQA retrieval
dataset

B.1.5 Inference Benchmarks

Evaluation of inference on GPU can be found in B.20,B.21,B.22,B.23 ,B.24,B.25 while

CPU results can be found in B.14, B.15, B.16, B.17, B.18, B.19. Comparisons showing the

role of speedup vs. relative degradation in retrieval accuracy can be found in B.1, B.3, and

B.2

150

Layers KALE MRR@10 Impact Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 32.47% 0.00% 70.47% 0.00% 88.77% 0.00% 93.84% 0.00%
9 N 27.68% -14.74% 62.97% -10.65% 82.01% -7.62% 87.62% -6.63%
9 Y 30.38% -6.43% 67.21% -4.64% 86.16% -2.94% 91.85% -2.12%
6 N 20.86% -35.75% 52.66% -25.27% 72.68% -18.12% 79.20% -15.60%
6 Y 28.71% -11.57% 65.44% -7.14% 84.68% -4.60% 90.74% -3.30%
3 N 1.49% -95.42% 5.10% -92.76% 11.39% -87.17% 15.16% -83.85%
3 Y 26.56% -18.19% 62.36% -11.51% 82.11% -7.50% 88.51% -5.68%
2 N 3.48% -89.28% 13.55% -80.77% 31.46% -64.56% 38.71% -58.75%
2 Y 26.10% -19.61% 61.68% -12.48% 81.96% -7.67% 88.41% -5.79%
1 N 0.00% -100.00% 0.00% -100.00% 0.00% -100.00% 0.00% -100.00%
1 Y 13.16% -59.47% 34.64% -50.84% 54.36% -38.77% 62.82% -33.05%

Table B.6: Impact of structural pruning with and without KALE on the MSMARCO
retrieval dataset

Layers KALE RR@10 Impact recall 10 Impact NDCG@10 Impact Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 59.11% 0.00% 78.71% 0.00% 62.55% 0.00% 82.38% 0.00% 90.70% 0.00% 93.77% 0.00%
9 N 25.30% -57.20% 39.66% -49.61% 27.46% -56.10% 45.43% -44.85% 71.07% -21.64% 79.03% -15.72%
9 Y 59.76% 1.10% 74.86% -4.89% 62.26% -0.46% 79.63% -3.34% 84.87% -6.43% 89.90% -4.13%
6 N 8.67% -85.33% 15.06% -80.87% 9.16% -85.36% 21.75% -73.60% 22.98% -74.66% 30.17$ -67.83%
6 Y 54.99% -6.97% 72.53% -7.85% 58.22% -6.92% 77.07% -6.45% 85.13% -6.14% 87.70% -6.47%
3 N 9.00% -84.77% 16.00% -79.67% 9.72% -84.46% 22.40% -72.81% 40.80% -55.02% 51.56% -45.01%
3 Y 55.18% -6.65% 77.22% -1.89% 58.30% -6.79% 76.73% -6.86% 82.57% -8.96% 86.90% -7.33%
2 N 9.65% -83.67% 16.93% -78.49% 10.39% -83.39% 24.26% -70.55% 42.66% -52.97% 51.49% -45.09%
2 Y 54.45% -7.88% 71.72% -8.88% 57.71% -7.74% 76.07% -7.66% 82.57% -8.96% 85.90% -8.39%
1 N 0.30% -99.49% 13.30% -83.10% 0.49% -99.22% 1.50% -98.18% 3.17% -96.50% 4.23% -95.49%
1 Y 40.52% -31.45% 55.25% -29.81% 43.23% -30.89% 59.00% -28.38% 66.83% -26.32% 70.22% -25.11%

Table B.7: Impact of structural pruning with and without KALE on the SCIFACTS
retrieval dataset

Layers KALE Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 63.82% 0.00% 77.16% 0.00% 81.06% 0.00%
9 N 56.16% -12.00% 71.38% -7.49% 76.41% -5.74%
9 Y 58.74% -7.96% 73.54% -4.69% 78.51% -3.15%
6 N 42.79% -32.95% 59.97% -22.28% 66.63% -17.80%
6 Y 53.51% -16.15% 69.87% -9.45% 75.03% -7.44%
3 N 18.67% -70.75% 34.42% -55.39% 42.02% -48.16%
3 Y 47.62% -25.38% 64.37% -16.58% 69.89% -13.78%
2 N 20.82% -67.38% 37.01% -52.03% 45.01% -44.47%
2 Y 46.60% -26.98% 63.72% -17.42% 69.53% -14.22%
1 N 5.30% -91.70% 11.66% -84.89% 15.88% -80.41%
1 Y 34.72% -45.60% 51.39% -33.40% 58.01% -28.44%

Table B.8: Impact of structural pruning with and without KALE on the SQUAD retrieval
dataset

151

Model Layers KALE MRR@10 Impact Top 20 Impact Top 100
BERT-base 12 N 32.47% 0.00% 70.47% 0.00% 88.77%
BERT-base 6 Y 28.71% -11.57% 65.44% -7.14% 84.68%
6kd − 6kd 6 N 32.21% -0.78% 69.94% -0.75% 88.19%
6db − 6db 6 N 32.13% -1.02% 70.37% -0.14% 88.35%
6kd − 3kd 6 N 30.44% -6.24% 67.82% -3.76% 86.50%
BERT-base 3 Y 26.56% -18.19% 62.36% -11.51% 82.11%
3kd − 3kd 3 N 30.01% -7.56% 67.42% -4.33% 86.13%
3kd − 6kd 3 N 29.60% -8.82% 66.53% -5.59% 84.79%
6kd − 3kd 3 Y 28.19% -13.16% 64.00% -9.19% 82.95%
6kd − 6kd 3 Y 30.40% -6.37% 67.62% -4.05% 86.75%
BERT-base 2 Y 26.10% -19.61% 61.68% -12.48% 81.96%
3kd − 3kd 2 Y 28.57% -12.00% 65.67% -6.81% 84.23%
3kd − 6kd 2 Y 29.52% -9.09% 66.16% -6.12% 85.57%
6kd − 3kd 2 Y 28.07% -13.54% 64.28% -8.78% 83.24%
6kd − 6kd 2 Y 30.00% -7.58% 66.91% -5.06% 85.77%
BERT-base 1 Y 10.87% -66.53% 29.80% -57.71% 48.05%
3kd − 3kd 1 Y 19.09% -41.21% 47.56% -32.51% 66.69%
3kd − 6kd 1 Y 21.74% -33.04% 52.29% -25.80% 72.13%
6kd − 3kd 1 Y 20.82% -35.88% 50.92% -27.75% 71.26%
6kd − 6kd 1 Y 20.67% -36.33% 51.81% -26.49% 70.70%

Table B.9: Impact of model asymmetry and use of KALE for structural pruning on the
MSMARCO retrieval dataset

B.2 NOISE-ROBUST DENSE RETRIEVAL VIA CONTRASTIVE ALIGNMENT POST
TRAINING

B.2.1 Training HyperParameters

Detailed hyperparameters for bi-encoder training can be found in table B.26 while the

parameters used for post-training alignment can be found in table B.27

B.2.2 Unaltered Bi-encoder With Noise

Summary results on the impact of noise on bi-encoder retrieval accuracy can be found

in B.28 while full detailed results can be found in tables B.30, B.31, B.32, B.36, B.37, B.38,

B.38, B.39, B.33, B.34,B.35.

152

Model Layers KALE recall 20 Impact recall 100 Impact recall 200
BERT-base 12 N 79.86% 0.00% 85.84% 0.00% 88.42%
BERT-base 6 Y 75.51% -5.45% 83.68% -2.52% 86.18%
6kd − 6kd 6 N 75.04% -6.03% 85.15% -0.80% 87.45%
6db − 6db 6 N 73.88% -7.49% 84.74% -1.29% 87.26%
6kd − 3kd 6 N 77.40% -3.09% 85.37% -0.54% 87.48%
BERT-base 3 Y 72.69% -8.98% 81.14% -5.48% 84.76%
3kd − 3kd 3 N 71.88% -9.99% 83.66% -2.54% 86.37%
3kd − 6kd 3 N 77.01% -3.57% 85.76% -0.09% 87.42%
6kd − 3kd 3 Y 74.16% -7.14% 83.43% -2.81% 85.62%
6kd − 6kd 3 Y 69.28% -13.25% 80.78% -5.89% 84.10%
BERT-base 2 Y 71.83% -10.06% 81.94% -4.54% 84.54%
3kd − 3kd 2 Y 70.08% -12.25% 82.71% -3.65% 85.60%
3kd − 6kd 2 Y 75.40% -5.58% 84.27% -1.83% 86.81%
6kd − 3kd 2 Y 73.49% -7.98% 83.02% -3.29% 85.76%
6kd − 6kd 2 Y 68.42% -14.33% 80.39% -6.35% 83.57%
BERT-base 1 Y 58.86% -26.30% 71.33% -16.90% 75.65%
3kd − 3kd 1 Y 62.69% -21.50% 77.17% -10.10% 81.33%
3kd − 6kd 1 Y 68.14% -14.68% 79.81% -7.02% 82.94%
6kd − 3kd 1 Y 63.82% -20.09% 76.57% -10.80% 80.33%
6kd − 6kd 1 Y 60.03% -24.83% 74.71% -12.97% 78.64%

Table B.10: Impact of model asymmetry and use of KALE for structural pruning on the
NQ retrieval dataset

153

Model Layers KALE recall 20 Impact recall 100 Impact recall 200
BERT-base 12 N 79.43% 0.00% 85.03% 0.00% 86.63%
BERT-base 6 Y 75.37% -5.11% 83.01% -2.38% 85.25%
6kd − 6kd 6 N 79.44% 0.01% 84.96% -0.08% 86.60%
6db − 6db 6 N 78.96% -0.59% 84.83% -0.23% 86.61%
6kd − 3kd 6 N 77.31% -2.67% 84.04% -1.17% 85.62%
BERT-base 3 Y 73.17% -7.88% 81.67% -3.95% 84.04%
3kd − 3kd 3 N 77.80% -2.05% 84.11% -1.09% 85.96%
3kd − 6kd 3 N 77.52% -2.40% 83.91% -1.31% 85.72%
6kd − 3kd 3 Y 74.98% -5.60% 82.33% -3.18% 84.35%
6kd − 6kd 3 Y 76.76% -3.36% 83.48% -1.82% 85.40%
BERT-base 2 Y 72.39% -8.86% 81.23% -4.47% 83.64%
3kd − 3kd 2 Y 76.48% -3.71% 83.02% -2.36% 85.16%
3kd − 6kd 2 Y 75.98% -4.34% 82.90% -2.50% 85.00%
6kd − 3kd 2 Y 74.60% -6.08% 82.13% -3.41% 84.44%
6kd − 6kd 2 Y 76.56% -3.61% 83.32% -2.01% 85.49%
BERT-base 1 Y 63.04% -20.63% 75.40% -11.33% 79.23%
3kd − 3kd 1 Y 71.66% -9.78% 80.82% -4.95% 83.56%
3kd − 6kd 1 Y 71.13% -10.45% 80.23% -5.65% 82.86%
6kd − 3kd 1 Y 68.11% -14.25% 78.65% -7.50% 81.89%
6kd − 6kd 1 Y 70.91% -10.73% 80.31% -5.55% 83.05%

Table B.11: Impact of model asymmetry and use of KALE for structural pruning on the
TriviaQA retrieval dataset

154

Model Layers KALE recall 20 Impact recall 100 Impact recall 200
BERT-base 12 N 63.82% 0.00% 77.16% 0.00% 81.06%
BERT-base 6 Y 53.51% -16.15% 69.87% -9.45% 75.03%
6kd − 6kd 6 N 54.80% -14.14% 71.94% -6.77% 77.73%
6db − 6db 6 N 54.60% -14.45% 71.69% -7.08% 77.23%
6kd − 3kd 6 N 52.97% -17.00% 70.89% -8.13% 76.68%
BERT-base 3 Y 47.62% -25.38% 64.37% -16.58% 69.89%
3kd − 3kd 3 N 55.05% -13.74% 71.98% -6.72% 77.76%
3kd − 6kd 3 N 48.86% -23.43% 67.85% -12.06% 74.04%
6kd − 3kd 3 Y 44.65% -30.04% 63.77% -17.35% 70.79%
6kd − 6kd 3 Y 45.36% -28.93% 64.14% -16.87% 71.07%
BERT-base 2 Y 48.43% -24.11% 67.02% -13.14% 73.19%
3kd − 3kd 2 Y 48.43% -24.11% 67.02% -13.14% 73.19%
3kd − 6kd 2 Y 43.45% -31.92% 62.75% -18.68% 69.74%
6kd − 3kd 2 Y 42.90% -32.78% 62.52% -18.97% 69.47%
6kd − 6kd 2 Y 35.08% -45.03% 52.74% -31.65% 59.93%
BERT-base 1 Y 34.72% -45.60% 51.39% -33.40% 58.01%
3kd − 3kd 1 Y 36.19% -43.29% 55.62% -27.92% 62.92%
3kd − 6kd 1 Y 34.75% -45.55% 52.26% -32.27% 59.35%
6kd − 3kd 1 Y 32.18% -49.58% 50.88% -34.06% 58.52%
6kd − 6kd 1 Y 35.08% -45.03% 52.74% -31.65% 59.93%

Table B.12: Impact of model asymmetry and use of KALE for structural pruning on the
SQUAD retrieval dataset

155

Model Layers KALE recip rank Impact NDC@10 Impact Recall 20
BERT-base 12 N 59.11% 0.00% 62.55% 0.00% 82.38%
BERT-base 6 Y 54.99% -6.97% 58.22% -6.92% 77.07%
6kd − 6kd 6 N 65.52% 10.84% 67.87% 8.51% 83.92%
6db − 6db 6 N 66.25% 12.08% 67.81% 8.41% 82.16%
6kd − 3kd 6 N 61.90% 4.72% 65.30% 4.40% 82.48%
BERT-base 3 Y 55.18% -6.65% 58.30% -6.79% 76.73%
3kd − 3kd 3 N 65.32% 10.51% 67.51% 7.93% 84.36%
3kd − 6kd 3 N 62.78% 6.21% 64.86% 3.69% 79.80%
6kd − 3kd 3 Y 62.07% 5.01% 64.73% 3.49% 82.57%
6kd − 6kd 3 Y 61.82% 4.58% 65.41% 4.57% 82.41%
BERT-base 2 Y 54.45% -7.88% 57.71% -7.74% 76.07%
3kd − 3kd 2 Y 61.78% 4.52% 64.78% 3.57% 82.76%
3kd − 6kd 2 Y 61.41% 3.89% 63.61% 1.69% 82.46%
6kd − 3kd 2 Y 61.82% 4.58% 64.80% 3.60% 82.51%
6kd − 6kd 2 Y 62.09% 5.04% 65.27% 4.35% 81.51%
BERT-base 1 Y 40.52% -31.45% 43.23% -30.89% 59.00%
3kd − 3kd 1 Y 42.93% -27.37% 44.19% -29.35% 61.06%
3kd − 6kd 1 Y 42.33% -28.39% 44.03% -29.61% 63.33%
6kd − 3kd 1 Y 42.72% -27.73% 45.68% -26.97% 65.81%
6kd − 6kd 1 Y 45.60% -22.86% 48.83% -21.93% 69.11%

Table B.13: Impact of model asymmetry and use of KALE for structural pruning on the
SCIFACTS retrieval dataset

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 44.890 80.414 2.17E-02 2.92E-02 2.09E-02 1.97E-02 3.07E-02
Run 2 48.370 74.628 2.01E-02 2.11E-02 2.00E-02 1.96E-02 2.22E-02
Run 3 47.290 76.334 2.06E-02 2.19E-02 2.04E-02 1.96E-02 2.28E-02
Run 4 48.260 74.810 2.01E-02 2.13E-02 2.00E-02 1.95E-02 2.22E-02
Run 5 47.580 75.872 2.04E-02 2.14E-02 2.03E-02 1.98E-02 2.28E-02
average 47.278 76.412 2.06E-02 2.30E-02 2.03E-02 1.96E-02 2.41E-02
stdev 1.410 2.348 6.46E-04 3.49E-03 3.65E-04 1.04E-04 3.68E-03
CI 1.236 2.058 5.66E-04 3.06E-03 3.20E-04 9.14E-05 3.23E-03
Lower 46.042 74.353 2.00E-02 1.99E-02 2.00E-02 1.96E-02 2.09E-02
High 48.514 78.470 2.12E-02 2.60E-02 2.06E-02 1.97E-02 2.74E-02

Table B.14: Inference Benchmark for 12-layer Query encoder on a CPU using ONNX

156

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 63.200 57.808 1.54E-02 1.65E-02 1.52E-02 1.49E-02 2.20E-02
Run 2 63.570 56.787 1.52E-02 1.60E-02 1.50E-02 1.48E-02 1.70E-02
Run 3 62.740 57.537 1.54E-02 1.64E-02 1.52E-02 1.48E-02 1.76E-02
Run 4 63.440 56.908 1.52E-02 1.59E-02 1.51E-02 1.48E-02 1.70E-02
Run 5 63.250 57.077 1.53E-02 1.60E-02 1.51E-02 1.48E-02 1.69E-02
average 63.240 57.223 1.53E-02 1.62E-02 1.51E-02 1.48E-02 1.81E-02
stdev 0.316 0.433 1.16E-04 2.49E-04 6.48E-05 6.69E-05 2.20E-03
CI 0.277 0.380 1.02E-04 2.18E-04 5.68E-05 5.86E-05 1.93E-03
Lower 62.963 56.844 1.52E-02 1.59E-02 1.51E-02 1.48E-02 1.62E-02
High 63.517 57.603 1.54E-02 1.64E-02 1.52E-02 1.49E-02 2.00E-02

Table B.15: Inference Benchmark for 9-layer Query encoder on a CPU using ONNX

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 91.090 39.631 1.04E-02 1.11E-02 1.03E-02 1.02E-02 1.19E-02
Run 2 90.990 39.677 1.04E-02 1.11E-02 1.03E-02 1.01E-02 1.22E-02
Run 3 91.290 39.547 1.04E-02 1.11E-02 1.03E-02 1.01E-02 1.22E-02
Run 4 89.420 40.372 1.06E-02 1.24E-02 1.02E-02 1.01E-02 1.51E-02
Run 5 89.140 40.499 1.07E-02 1.21E-02 1.03E-02 1.01E-02 1.49E-02
average 90.386 39.945 1.05E-02 1.16E-02 1.03E-02 1.01E-02 1.32E-02
stdev 1.020 0.452 1.23E-04 6.03E-04 3.95E-05 4.27E-05 1.61E-03
CI 0.894 0.396 1.08E-04 5.29E-04 3.47E-05 3.74E-05 1.41E-03
Lower 89.492 39.549 1.04E-02 1.10E-02 1.03E-02 1.01E-02 1.18E-02
High 91.280 40.342 1.06E-02 1.21E-02 1.03E-02 1.02E-02 1.47E-02

Table B.16: Inference Benchmark for 6-layer Query encoder on a CPU using ONNX

items/sec Full Time Mean Time 95th 50th 5th 99th

Run 1 166.340 21.704 5.47E-03 5.84E-03 5.40E-03 5.35E-03 6.34E-03

Run 2 164.830 21.902 5.53E-03 6.14E-03 5.40E-03 5.31E-03 7.35E-03

Run 3 167.570 21.544 5.43E-03 5.87E-03 5.34E-03 5.30E-03 6.42E-03

Run 4 165.370 21.830 5.51E-03 6.11E-03 5.39E-03 5.30E-03 6.96E-03

Run 5 165.950 21.755 5.49E-03 5.92E-03 5.40E-03 5.32E-03 6.54E-03

average 166.012 21.747 5.49E-03 5.98E-03 5.39E-03 5.32E-03 6.72E-03

stdev 1.043 0.136 3.58E-05 1.41E-04 2.49E-05 2.20E-05 4.23E-04

CI 0.914 0.119 3.14E-05 1.23E-04 2.18E-05 1.93E-05 3.71E-04

Lower 165.098 21.628 5.45E-03 5.86E-03 5.37E-03 5.30E-03 6.35E-03

High 166.926 21.867 5.52E-03 6.10E-03 5.41E-03 5.33E-03 7.09E-03

BERT-base 2 Y 54.45% -7.88% 57.71% -7.74% 76.07%

Table B.17: Inference Benchmark for 3-layer Query encoder on a CPU using ONNX

157

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 228.690 15.786 3.85E-03 4.53E-03 3.72E-03 3.67E-03 5.29E-03
Run 2 230.420 15.668 3.81E-03 4.24E-03 3.74E-03 3.65E-03 4.72E-03
Run 3 228.800 15.779 3.84E-03 4.23E-03 3.77E-03 3.73E-03 4.68E-03
Run 4 230.530 15.661 3.81E-03 4.23E-03 3.74E-03 3.68E-03 4.63E-03
Run 5 229.890 15.704 3.82E-03 4.25E-03 3.75E-03 3.70E-03 4.64E-03
average 229.666 15.720 3.83E-03 4.29E-03 3.74E-03 3.69E-03 4.79E-03
stdev 0.876 0.060 1.72E-05 1.32E-04 1.84E-05 3.00E-05 2.81E-04
CI 0.768 0.053 1.51E-05 1.16E-04 1.61E-05 2.63E-05 2.47E-04
Lower 228.898 15.667 3.81E-03 4.18E-03 3.73E-03 3.66E-03 4.55E-03
High 230.434 15.772 3.84E-03 4.41E-03 3.76E-03 3.71E-03 5.04E-03

Table B.18: Inference Benchmark for two-layer Query encoder on a CPU using ONNX

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 378.680 9.534 2.14E-03 2.39E-03 2.10E-03 2.08E-03 2.88E-03
Run 2 378.950 9.528 2.14E-03 2.31E-03 2.11E-03 2.08E-03 2.66E-03
Run 3 377.750 9.558 2.13E-03 2.30E-03 2.12E-03 2.06E-03 2.67E-03
Run 4 376.560 9.588 2.16E-03 2.35E-03 2.12E-03 2.06E-03 2.74E-03
Run 5 380.730 9.483 2.14E-03 2.30E-03 2.11E-03 2.08E-03 2.66E-03
average 378.534 9.538 2.15E-03 2.33E-03 2.11E-03 2.07E-03 2.72E-03
stdev 1.543 0.039 7.46E-06 3.64E-05 8.72E-06 9.49E-06 9.64E-05
CI 1.353 0.034 6.54E-06 3.19E-05 7.65E-06 8.31E-06 8.45E-05
Lower 377.181 9.504 2.14E-03 2.30E-03 2.11E-03 2.06E-03 2.64E-03
High 379.887 9.572 2.15E-03 2.36E-03 2.12E-03 2.08E-03 2.81E-03

Table B.19: Inference Benchmark for one layer Query encoder on a CPU using ONNX

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 103.16 35.00 9.22E-03 9.33E-03 9.16E-03 9.08E-03 1.20E-02
Run 2 111.51 32.36 8.50E-03 8.61E-03 8.47E-03 8.42E-03 8.73E-03
Run 3 114.02 31.66 8.31E-03 8.41E-03 8.28E-03 8.22E-03 8.60E-03
Run 4 90.39 39.94 1.06E-02 1.07E-02 1.05E-02 1.04E-02 1.25E-02
Run 5 110.18 32.77 8.62E-03 8.74E-03 8.58E-03 8.51E-03 9.06E-03
average 105.85 34.35 9.04E-03 9.15E-03 9.00E-03 8.93E-03 1.02E-02
stdev 9.54 3.37 9.17E-04 9.19E-04 9.04E-04 9.02E-04 1.92E-03
CI 8.36 2.95 8.04E-04 8.06E-04 7.92E-04 7.91E-04 1.68E-03
Lower 97.49 31.40 8.24E-03 8.35E-03 8.21E-03 8.14E-03 8.50E-03
High 114.21 37.30 9.85E-03 9.96E-03 9.79E-03 9.73E-03 1.19E-02

Table B.20: Inference Benchmark for 12-layer Query encoder on a T4 GPU

158

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 140.35 25.72 6.69E-03 6.78E-03 6.66E-03 6.61E-03 6.94E-03
Run 2 148.25 24.35 6.31E-03 6.52E-03 6.26E-03 6.22E-03 6.64E-03
Run 3 147.04 24.55 6.37E-03 6.47E-03 6.32E-03 6.28E-03 7.19E-03
Run 4 116.15 31.08 8.14E-03 8.25E-03 8.09E-03 8.01E-03 1.09E-02
Run 5 145.68 24.78 6.44E-03 6.50E-03 6.39E-03 6.35E-03 8.83E-03
average 139.49 26.10 6.79E-03 6.91E-03 6.74E-03 6.69E-03 8.11E-03
stdev 13.39 2.84 7.70E-04 7.62E-04 7.66E-04 7.52E-04 1.79E-03
CI 11.74 2.49 6.75E-04 6.68E-04 6.72E-04 6.59E-04 1.57E-03
Lower 127.75 23.61 6.11E-03 6.24E-03 6.07E-03 6.04E-03 6.54E-03
High 151.23 28.58 7.46E-03 7.57E-03 7.42E-03 7.35E-03 9.67E-03

Table B.21: Inference Benchmark for 9-layer Query encoder on a T4 GPU

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 163.72 22.05 5.67E-03 5.75E-03 5.62E-03 5.56E-03 7.75E-03
Run 2 161.90 22.30 5.74E-03 5.81E-03 5.70E-03 5.63E-03 6.17E-03
Run 3 165.07 21.87 5.62E-03 5.70E-03 5.58E-03 5.51E-03 6.86E-03
Run 4 189.71 19.03 4.84E-03 4.92E-03 4.82E-03 4.77E-03 5.07E-03
Run 5 181.29 19.91 5.07E-03 5.92E-03 4.94E-03 4.88E-03 6.68E-03
average 172.34 21.03 5.39E-03 5.62E-03 5.33E-03 5.27E-03 6.51E-03
stdev 12.43 1.47 4.07E-04 3.99E-04 4.17E-04 4.11E-04 9.85E-04
CI 10.89 1.29 3.56E-04 3.50E-04 3.65E-04 3.61E-04 8.63E-04
Lower 161.44 19.75 5.03E-03 5.27E-03 4.97E-03 4.91E-03 5.64E-03
High 183.23 22.32 5.74E-03 5.97E-03 5.70E-03 5.63E-03 7.37E-03

Table B.22: Inference Benchmark for 6-layer Query encoder on a T4 GPU

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 269.73 13.39 3.28E-03 3.30E-03 3.26E-03 3.20E-03 3.87E-03
Run 2 282.90 12.76 3.12E-03 3.38E-03 3.23E-03 2.65E-03 4.39E-03
Run 3 268.47 13.45 3.30E-03 3.31E-03 3.28E-03 3.25E-03 3.76E-03
Run 4 318.47 11.34 2.74E-03 2.79E-03 2.72E-03 2.69E-03 3.17E-03
Run 5 357.68 10.09 2.43E-03 2.50E-03 2.41E-03 2.39E-03 2.69E-03
average 299.45 12.21 2.97E-03 3.05E-03 2.98E-03 2.84E-03 3.58E-03
stdev 38.31 1.45 3.78E-04 3.90E-04 3.93E-04 3.75E-04 6.58E-04
CI 33.58 1.27 3.31E-04 3.42E-04 3.45E-04 3.29E-04 5.77E-04
Lower 265.87 10.93 2.64E-03 2.71E-03 2.64E-03 2.51E-03 3.00E-03
High 333.03 13.48 3.30E-03 3.40E-03 3.33E-03 3.16E-03 4.16E-03

Table B.23: Inference Benchmark for 3-layer Query encoder on a T4 GPU

159

Figure B.1: Speedup vs. Retrieval accuracy of compressed models on NQ passage retrieval
with a recall set 200.

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 465.83 7.75 1.78E-03 1.83E-03 1.76E-03 1.74E-03 2.53E-03
Run 2 435.46 8.29 1.92E-03 2.01E-03 1.91E-03 1.89E-03 2.04E-03
Run 3 471.01 7.67 1.77E-03 1.84E-03 1.75E-03 1.74E-03 1.95E-03
Run 4 413.49 8.73 2.02E-03 2.06E-03 2.00E-03 1.96E-03 2.61E-03
Run 5 421.32 8.57 1.98E-03 2.05E-03 1.96E-03 1.94E-03 2.07E-03
average 441.42 8.20 1.89E-03 1.96E-03 1.88E-03 1.86E-03 2.24E-03
stdev 25.94 0.48 1.15E-04 1.12E-04 1.15E-04 1.07E-04 3.07E-04
CI 22.73 0.42 1.00E-04 9.83E-05 1.01E-04 9.34E-05 2.69E-04
Lower 418.69 7.78 1.79E-03 1.86E-03 1.78E-03 1.76E-03 1.97E-03
High 464.16 8.62 1.99E-03 2.05E-03 1.98E-03 1.95E-03 2.51E-03

Table B.24: Inference Benchmark for 2-layer Query encoder on a T4 GPU

160

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 627.64 5.75 1.22E-03 1.26E-03 1.21E-03 1.20E-03 1.28E-03
Run 2 673.96 5.36 1.13E-03 1.18E-03 1.12E-03 1.11E-03 1.22E-03
Run 3 651.45 5.54 1.18E-03 1.24E-03 1.17E-03 1.16E-03 1.28E-03
Run 4 677.99 5.33 1.12E-03 1.19E-03 1.11E-03 1.10E-03 1.22E-03
Run 5 672.16 5.37 1.13E-03 1.18E-03 1.12E-03 1.11E-03 1.22E-03
average 660.64 5.47 1.15E-03 1.21E-03 1.14E-03 1.14E-03 1.24E-03
stdev 21.12 0.18 4.28E-05 3.74E-05 4.44E-05 4.25E-05 3.30E-05
CI 18.51 0.16 3.75E-05 3.27E-05 3.89E-05 3.72E-05 2.89E-05
Lower 642.13 5.31 1.12E-03 1.18E-03 1.11E-03 1.10E-03 1.21E-03
High 679.15 5.63 1.19E-03 1.24E-03 1.18E-03 1.17E-03 1.27E-03

Table B.25: Inference Benchmark for 1-layer Query encoder on a T4 GPU

Figure B.2: Speedup vs. Retrieval accuracy of compressed models on NQ passage retrieval
with a recall set of 100.

Dataset Batch Size Learning Rate Train Epochs Negative Passages
NQ 128 1e-5 40 1

TrivaQA 128 1e-5 40 1
MSMARCO 8 5e-6 3 8

Table B.26: Model Training parameters across tasks. NQ and TriviaQA are trained using 4
V100s, while MSMARCO uses a single V100

161

Figure B.3: Speedup vs. Retrieval accuracy of compressed models on NQ passage retrieval
with a recall set of 20.

Dataset Learning Rate τpositive τnegative τanchor τranking Batch Size Training Time
NQ 5.00E-05 2 0.2 2 0.7 2048 1 hour
TriviaQA 5.00E-05 1 0.1 2 1 2048 1.5 hours
MSMARCO 5.00E-05 1 0.1 2 1 2048 5 hours

Table B.27: CAPOT optimal hyperparameters across datasets. Models were generally
trained for ten epochs, but we find that a single epoch can provide 95% of the final
performance increase.

Dataset 20 20 w/noise Loss 100 100 w/noise Loss 200 200 w/noise Loss
NQ 79.73% 72.30% -9.31% 85.98% 81.58% -5.12% 88.25% 84.31% -4.47%
MS Marco 71.63% 58.45% -18.40% 88.79% 58.68% -33.91% 93.78% 80.63% -14.02%
TriviaQA 79.40% 75.86% -4.46% 85.01% 82.71% -2.70% 86.66% 84.89% -2.04%

Table B.28: Retrieval accuracy for Bi-encoders on unaltered and noisy queries with recall
sets of 20,100, and 200 documents.

Dataset 20 20 w/noise Loss 100 100 w/noise Impact 200 200 w/noise Loss
NQ 79.73% 67.83% -14.93% 85.98% 78.71% -8.45% 88.25% 81.84% -7.27%
MS Marco 71.63% 41.77% -41.69% 88.79% 70.13% -21.02% 93.78% 82.47% -12.06%
TriviaQA 79.40% 72.71% -8.43% 85.01% 81.15% -4.55% 86.66% 83.72% -3.39%

Table B.29: Retrieval accuracy for Bi-encoders on unaltered and character-based noisy
queries (typos) with recall sets of 20,100, and 200 documents

162

Noise Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Median STD CI Upper Bound Lower Bound
None 79.86% 79.78% 79.47% 79.64% 79.89% 79.73% 1.72E-03 1.51E-03 79.88% 79.58%
Determiner 74.46% 74.65% 74.88% 74.54% 74.40% 74.59% 1.86E-03 1.63E-03 74.75% 74.42%
Synonym 68.50% 68.23% 68.39% 68.84% 68.37% 68.47% 2.30E-03 2.01E-03 68.67% 68.26%
Lemma 74.38% 74.10% 74.46% 74.35% 74.35% 74.33% 1.35E-03 1.18E-03 74.45% 74.21%
Stem 74.38% 74.10% 74.46% 73.93% 74.35% 74.24% 2.19E-03 1.92E-03 74.44% 74.05%
RCS 67.06% 67.37% 67.78% 66.62% 66.79% 67.12% 4.65E-03 4.08E-03 67.53% 66.72%
KCS 67.04% 67.01% 67.40% 66.34% 67.29% 67.01% 4.09E-03 3.59E-03 67.37% 66.66%
CD 69.20% 69.00% 69.97% 69.31% 69.25% 69.35% 3.68E-03 3.23E-03 69.67% 69.02%
RW 76.45% 76.40% 76.48% 76.51% 76.45% 76.46% 4.11E-04 3.60E-04 76.50% 76.42%
BT 72.35% 72.13% 71.91% 71.63% 72.11% 72.03% 2.70E-03 2.37E-03 72.26% 71.79%
Paraphrase 72.19% 72.19% 71.72% 71.52% 72.38% 72.00% 3.62E-03 3.17E-03 72.32% 71.68%
Average 72.35% 72.27% 72.45% 72.11% 72.33% 72.30% 1.24E-03 1.09E-03 72.41% 72.19%
Typos 67.77% 67.79% 68.38% 67.42% 67.77% 67.83% 4.14E-03 3.63E-03 68.19% 67.47%

Table B.30: Baseline retrieval accuracy at recall set size 20 Performance on NQ with five
random seeds with and without noisy queries.

Noise Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Median STD CI Upper Bound Lower Bound
None 85.98% 86.01% 86.15% 85.93% 85.82% 85.98% 1.21E-03 1.06E-03 86.08% 85.87%
Determiner 83.49% 83.35% 83.41% 83.57% 83.43% 83.45% 8.45E-04 7.40E-04 83.53% 83.38%
Synonym 79.61% 79.36% 79.78% 79.58% 79.75% 79.62% 1.66E-03 1.45E-03 79.76% 79.47%
Lemma 82.85% 83.21% 82.94% 82.71% 82.96% 82.94% 1.83E-03 1.60E-03 83.10% 82.78%
Stem 82.88% 83.21% 82.94% 82.71% 82.96% 82.94% 1.80E-03 1.58E-03 83.10% 82.78%
RCS 78.50% 79.00% 79.11% 77.92% 78.78% 78.66% 4.76E-03 4.17E-03 79.08% 78.25%
KCS 78.01% 77.92% 78.42% 77.73% 78.03% 78.02% 2.53E-03 2.22E-03 78.24% 77.80%
CD 79.75% 79.36% 79.53% 79.00% 79.64% 79.46% 2.92E-03 2.56E-03 79.71% 79.20%
RW 85.07% 85.07% 84.85% 84.82% 85.04% 84.97% 1.25E-03 1.09E-03 85.08% 84.86%
BT 80.14% 79.92% 80.03% 79.47% 80.11% 79.93% 2.71E-03 2.38E-03 80.17% 79.70%
Paraphrase 81.44% 81.44% 81.19% 81.44% 81.30% 81.36% 1.13E-03 9.92E-04 81.46% 81.26%
Average 81.61% 81.62% 81.67% 81.35% 81.62% 81.58% 1.25E-03 1.10E-03 81.69% 81.47%
Typos 78.75% 78.76% 79.02% 78.22% 78.82% 78.71% 0.34% 0.30% 79.01% 78.42%

Table B.31: Baseline retrieval accuracy at recall set size 100 Performance on NQ with five
random seeds with and without noisy queries.

Noise Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Median STD CI Upper Bound Lower Bound
None 88.42% 87.89% 88.23% 88.28% 88.42% 88.25% 2.16E-03 1.89E-03 88.44% 88.06%
Determiner 86.09% 85.82% 86.04% 85.87% 86.12% 85.99% 1.36E-03 1.19E-03 86.11% 85.87%
Synonym 82.85% 82.85% 82.66% 82.80% 82.96% 82.83% 1.11E-03 9.71E-04 82.92% 82.73%
Lemma 86.04% 85.37% 82.94% 85.37% 85.93% 85.13% 1.26E-02 1.11E-02 86.24% 84.02%
Stem 86.01% 85.37% 85.90% 85.37% 85.93% 85.72% 3.16E-03 2.77E-03 85.99% 85.44%
RCS 81.72% 82.08% 82.49% 81.86% 81.63% 81.96% 3.44E-03 3.02E-03 82.26% 81.65%
KCS 81.69% 81.47% 81.72% 80.97% 81.75% 81.52% 3.26E-03 2.85E-03 81.80% 81.23%
CD 79.75% 82.60% 82.83% 82.44% 82.58% 82.04% 1.29E-02 1.13E-02 83.17% 80.91%
RW 87.34% 87.40% 87.26% 87.34% 87.37% 87.34% 5.18E-04 4.54E-04 87.39% 87.30%
BT 82.52% 82.19% 82.94% 82.47% 82.60% 82.54% 2.70E-03 2.36E-03 82.78% 82.31%
Paraphrase 83.93% 83.93% 83.99% 84.27% 84.32% 84.09% 1.90E-03 1.66E-03 84.25% 83.92%
Average 84.22% 84.27% 84.27% 84.28% 84.51% 84.31% 1.15E-03 1.01E-03 84.41% 84.21%
Typos 81.05% 82.05% 82.35% 81.75% 81.99% 81.84% 6.52E-03 5.72E-03 82.41% 81.27%

Table B.32: Baseline retrieval accuracy at recall set size 200 Performance on NQ with five
random seeds with and without noisy queries.

Noise Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Median STD CI Upper Bound Lower Bound
None 79.37% 79.56% 79.58% 79.32% 79.17% 79.40% 1.71E-03 1.50E-03 79.55% 79.25%
Determiner 77.40% 77.44% 77.39% 77.54% 77.02% 77.36% 1.99E-03 1.74E-03 77.53% 77.18%
Synonym 74.93% 75.18% 75.06% 75.21% 75.15% 75.11% 1.11E-03 9.76E-04 75.20% 75.01%
Lemma 79.11% 79.11% 79.15% 78.95% 79.02% 79.06% 8.91E-04 7.81E-04 79.14% 78.98%
Stem 78.11% 78.35% 78.41% 77.98% 78.18% 78.21% 1.77E-03 1.55E-03 78.36% 78.05%
RCS 72.41% 72.94% 72.67% 72.60% 72.60% 72.64% 1.92E-03 1.68E-03 72.81% 72.48%
KCS 72.24% 72.39% 72.52% 72.34% 72.21% 72.34% 1.23E-03 1.08E-03 72.45% 72.23%
CD 73.31% 73.16% 73.09% 73.10% 73.06% 73.14% 9.77E-04 8.56E-04 73.23% 73.06%
RW 78.16% 78.18% 78.16% 77.80% 77.96% 78.05% 1.69E-03 1.48E-03 78.20% 77.90%
BT 73.76% 73.93% 73.77% 75.08% 73.69% 74.05% 5.85E-03 5.13E-03 74.56% 73.53%
Paraphrase 75.04% 75.19% 75.36% 75.08% 74.84% 75.10% 1.89E-03 1.66E-03 75.27% 74.94%
Average 75.80% 75.95% 75.92% 75.91% 75.72% 75.86% 9.75E-04 8.54E-04 75.95% 75.78%
Typos 72.65% 72.83% 72.76% 72.68% 72.62% 72.71% 1.38E-03 1.21E-03 72.83% 72.59%

Table B.33: Baseline retrieval accuracy at recall set size 20 Performance on TrivaQA with
five random seeds with and without noisy queries.

163

Noise Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Median STD CI Upper Bound Lower Bound
None 85.03% 84.95% 85.10% 85.10% 84.88% 85.01% 9.41E-04 8.25E-04 85.09% 84.93%
Determiner 83.78% 83.77% 84.02% 83.90% 83.70% 83.83% 1.26E-03 1.11E-03 83.95% 83.72%
Synonym 82.37% 82.41% 82.52% 82.37% 82.27% 82.39% 8.87E-04 7.78E-04 82.47% 82.31%
Lemma 84.81% 84.82% 84.82% 84.92% 84.68% 84.81% 8.51E-04 7.46E-04 84.89% 84.74%
Stem 84.40% 84.32% 84.45% 84.42% 84.20% 84.36% 1.00E-03 8.78E-04 84.45% 84.27%
RCS 80.92% 81.00% 81.00% 80.92% 80.92% 80.95% 4.13E-04 3.62E-04 80.99% 80.92%
KCS 81.12% 81.03% 81.39% 81.07% 81.19% 81.16% 1.44E-03 1.26E-03 81.29% 81.03%
CD 81.34% 81.26% 81.38% 81.35% 81.30% 81.33% 4.83E-04 4.23E-04 81.37% 81.28%
RW 84.33% 84.27% 84.36% 77.80% 84.20% 82.99% 2.91E-02 2.55E-02 85.54% 80.45%
BT 80.33% 80.08% 80.20% 82.26% 80.12% 80.60% 9.33E-03 8.18E-03 81.42% 79.78%
Paraphrase 82.46% 82.50% 82.33% 82.50% 82.21% 82.40% 1.28E-03 1.12E-03 82.51% 82.29%
Average 82.81% 82.77% 82.87% 82.42% 82.70% 82.71% 1.76E-03 1.54E-03 82.87% 82.56%
Typos 81.13% 81.10% 81.26% 81.11% 81.14% 81.15% 0.08% 0.07% 81.21% 81.08%

Table B.34: Baseline retrieval accuracy at recall set size 100 Performance on TrivaQA with
five random seeds with and without noisy queries.

Noise Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Median STD CI Upper Bound Lower Bound
None 86.87% 86.53% 86.61% 86.63% 86.67% 86.66% 1.29E-03 1.13E-03 86.77% 86.55%
Determiner 85.73% 85.66% 85.62% 85.65% 85.73% 85.68% 5.12E-04 4.48E-04 85.73% 85.64%
Synonym 84.58% 84.46% 84.46% 84.67% 84.58% 84.55% 8.99E-04 7.88E-04 84.63% 84.47%
Lemma 86.72% 86.35% 86.45% 86.44% 86.54% 86.50% 1.41E-03 1.23E-03 86.62% 86.38%
Stem 86.38% 86.04% 86.09% 86.15% 86.24% 86.18% 1.33E-03 1.17E-03 86.30% 86.06%
RCS 83.64% 83.43% 83.48% 83.55% 83.55% 83.53% 7.77E-04 6.81E-04 83.60% 83.46%
KCS 83.92% 83.72% 83.89% 83.66% 83.80% 83.80% 1.13E-03 9.91E-04 83.90% 83.70%
CD 83.81% 83.86% 83.77% 83.85% 83.93% 83.84% 6.01E-04 5.27E-04 83.90% 83.79%
RW 86.05% 86.32% 85.98% 86.09% 85.97% 86.08% 1.40E-03 1.23E-03 86.20% 85.96%
BT 82.39% 82.07% 82.19% 84.35% 82.22% 82.64% 9.58E-03 8.39E-03 83.48% 81.81%
Paraphrase 84.42% 84.35% 84.32% 84.35% 84.39% 84.36% 3.90E-04 3.42E-04 84.40% 84.33%
Average 84.96% 84.80% 84.81% 85.03% 84.87% 84.89% 1.01E-03 8.83E-04 84.98% 84.81%
Typos 83.79% 83.67% 83.71% 83.69% 83.76% 83.72% 8.36E-04 7.33E-04 83.80% 83.65%

Table B.35: Baseline retrieval accuracy at recall set size 200 Performance on TrivaQA with
five random seeds with and without noisy queries.

Noise Seed 1 Seed 2 Seed 3 Seed 3 Seed 5 Median STD CI Upper Bound Lower Bound
None 32.43% 32.41% 32.31% 32.81% 32.01% 32.39% 2.87E-03 2.51E-03 3.26E-01 3.21E-01
Determiner 25.86% 26.01% 25.55% 26.12% 25.71% 25.85% 2.30E-03 2.02E-03 2.61E-01 2.56E-01
Synonym 20.75% 20.52% 20.36% 20.94% 20.58% 20.63% 2.23E-03 1.96E-03 2.08E-01 2.04E-01
Lemma 31.55% 31.54% 31.50% 31.84% 31.10% 31.50% 2.65E-03 2.32E-03 3.17E-01 3.13E-01
Stem 26.88% 27.01% 26.65% 27.23% 26.59% 26.87% 2.63E-03 2.31E-03 2.71E-01 2.66E-01
RCS 16.87% 16.70% 16.46% 17.36% 16.89% 16.85% 3.29E-03 2.88E-03 1.71E-01 1.66E-01
KCS 15.93% 16.06% 15.63% 16.48% 15.88% 16.00% 3.14E-03 2.75E-03 1.63E-01 1.57E-01
CD 18.17% 17.91% 17.63% 18.46% 17.87% 18.00% 3.16E-03 2.77E-03 1.83E-01 1.77E-01
RW 31.37% 31.30% 30.99% 31.36% 30.96% 31.19% 2.05E-03 1.80E-03 3.14E-01 3.10E-01
BT 26.95% 26.57% 26.62% 27.10% 26.54% 26.76% 2.55E-03 2.23E-03 2.70E-01 2.65E-01
Paraphrase 26.69% 26.51% 26.38% 26.75% 26.50% 26.56% 1.55E-03 1.35E-03 2.67E-01 2.64E-01
Average 24.86% 24.78% 24.55% 25.13% 24.60% 24.78% 2.32E-03 2.03E-03 2.50E-01 2.46E-01
Typos 16.99% 16.89% 16.57% 17.43% 16.88% 16.95% 3.20E-03 2.80E-03 1.72E-01 1.67E-01

Table B.36: Dense Model MRR@10 Performance on MSMARCO with five random seeds
with and without noisy queries.

Noise Seed 1 Seed 2 Seed 3 Seed 3 Seed 5 Median STD CI Upper Bound Lower Bound
None 71.36% 72.03% 71.65% 71.83% 71.29% 71.63% 3.14E-03 2.75E-03 71.91% 71.36%
Determiner 59.64% 60.20% 59.91% 60.10% 59.46% 59.86% 3.11E-03 2.73E-03 60.14% 59.59%
Synonym 49.96% 50.09% 49.63% 50.46% 50.37% 50.10% 3.34E-03 2.93E-03 50.39% 49.81%
Lemma 69.84% 70.24% 92.71% 70.09% 69.99% 74.57% 1.01E-01 8.89E-02 83.46% 65.69%
Stem 61.91% 61.88% 61.70% 61.81% 79.23% 65.30% 7.78E-02 6.82E-02 72.13% 58.48%
RCS 41.33% 41.63% 40.87% 41.86% 40.80% 41.30% 4.63E-03 4.06E-03 41.71% 40.89%
KCS 39.66% 40.01% 39.18% 40.04% 39.20% 39.62% 4.20E-03 3.68E-03 39.99% 39.25%
CD 43.81% 44.77% 44.03% 44.80% 44.57% 44.40% 4.51E-03 3.95E-03 44.79% 44.00%
RW 69.84% 70.06% 69.63% 69.96% 69.91% 61.23% 2.03E-03 1.78E-03 61.40% 61.05%
BT 61.23% 61.40% 60.99% 61.45% 61.06% 65.05% 8.19E-02 7.18E-02 72.23% 57.87%
Paraphrase 61.28% 61.83% 79.70% 61.30% 61.15% 65.05% 8.19E-02 7.18E-02 72.23% 57.87%
Average 57.26% 57.65% 60.91% 57.61% 58.82% 58.45% 1.50E-02 1.31E-02 59.76% 57.14%
Typos 41.60% 42.14% 41.36% 42.23% 41.52% 41.77% 0.44% 0.39% 42.16% 41.38%

Table B.37: Baseline retrieval accuracy at recall set size 20 Performance on MSMARCO
with five random seeds with and without noisy queries.

164

Noise Seed 1 Seed 2 Seed 3 Seed 3 Seed 5 Median STD CI Upper Bound Lower Bound
None 88.40% 89.10% 88.67% 89.05% 88.75% 88.79% 2.90E-03 2.54E-03 89.05% 88.54%
Determiner 77.36% 77.69% 77.55% 77.89% 77.79% 77.66% 2.08E-03 1.83E-03 77.84% 77.48%
Synonym 67.88% 68.67% 67.52% 68.24% 68.14% 68.09% 4.26E-03 3.73E-03 68.46% 67.72%
Lemma 87.08% 87.81% 87.39% 87.85% 87.55% 87.54% 3.18E-03 2.79E-03 87.81% 87.26%
Stem 78.91% 79.76% 79.11% 79.50% 79.23% 79.30% 3.32E-03 2.91E-03 79.59% 79.01%
RCS 57.46% 58.38% 57.32% 58.90% 57.92% 58.00% 6.53E-03 5.72E-03 58.57% 57.43%
KCS 55.72% 56.07% 55.70% 56.79% 56.15% 56.09% 5.73E-03 5.02E-03 56.59% 55.58%
CD 61.49% 61.92% 61.78% 62.95% 61.69% 61.97% 3.56E-03 3.12E-03 62.28% 61.65%
RW 87.31% 87.84% 87.36% 87.77% 87.58% 87.57% 2.57E-03 2.25E-03 87.80% 87.35%
BT 78.35% 78.91% 78.12% 78.94% 78.68% 78.60% 3.56E-03 3.12E-03 78.91% 78.29%
Paraphrase 79.44% 79.74% 79.70% 80.04% 79.41% 79.67% 2.57E-03 2.25E-03 79.89% 79.44%
Average 74.49% 75.08% 74.57% 75.27% 74.81% 74.84% 3.31E-03 2.90E-03 75.13% 74.55%
Typos 58.22% 58.79% 58.27% 59.55% 58.59% 58.68% 5.27E-03 4.62E-03 59.14% 58.22%

Table B.38: Baseline retrieval accuracy at recall set size 100 Performance on MSMARCO
with five random seeds with and without noisy queries.

Noise Seed 1 Seed 2 Seed 3 Seed 3 Seed 5 Median STD CI Upper Bound Lower Bound
None 93.93% 93.95% 93.34% 93.90% 93.80% 93.78% 2.55E-03 2.24E-03 94.01% 93.56%
Determiner 83.38% 83.90% 83.44% 83.67% 83.44% 83.56% 2.16E-03 1.89E-03 83.75% 83.38%
Synonym 74.27% 75.03% 74.01% 74.76% 74.63% 74.54% 4.02E-03 3.52E-03 74.89% 74.19%
Lemma 92.68% 92.71% 92.35% 92.65% 92.48% 92.57% 1.54E-03 1.35E-03 92.71% 92.44%
Stem 84.74% 84.83% 84.30% 84.91% 84.70% 84.70% 2.37E-03 2.08E-03 84.90% 84.49%
RCS 63.95% 64.66% 63.81% 65.32% 64.36% 64.42% 6.02E-03 5.28E-03 64.95% 63.89%
KCS 62.05% 62.97% 62.61% 63.84% 62.91% 62.87% 6.51E-03 5.70E-03 63.44% 62.30%
CD 68.38% 68.47% 67.66% 68.88% 68.38% 68.36% 4.38E-03 3.84E-03 68.74% 67.97%
RW 92.58% 92.78% 92.56% 92.71% 92.52% 92.63% 1.08E-03 9.51E-04 92.73% 92.54%
BT 84.21% 84.36% 83.72% 83.97% 84.14% 84.08% 2.43E-03 2.13E-03 84.29% 83.87%
Paraphrase 85.60% 85.79% 85.70% 86.39% 85.60% 85.82% 3.30E-03 2.89E-03 86.11% 85.53%
Average 80.52% 80.86% 80.32% 81.00% 80.63% 80.67% 2.69E-03 2.36E-03 80.90% 80.43%
Typos 64.79% 65.36% 64.69% 66.01% 65.21% 65.22% 5.64E-03 4.94E-03 65.71% 64.72%

Table B.39: Baseline retrieval accuracy at recall set size 200 Performance on MSMARCO
with five random seeds with and without noisy queries.

Noise Regular Loss PT Loss DA Loss CAPOT Loss
None 79.73% -0.04% 75.04% -5.88% 79.61% -0.15% 77.84% -2.37%
Determiner 74.59% -6.49% 72.33% -9.29% 77.67% -2.58% 76.23% -4.39%
Synonym 68.47% -14.16% 67.12% -15.81% 73.07% -8.35% 71.66% -10.12%
Lemma 74.33% -6.82% 74.79% -6.19% 77.95% -2.23% 77.70% -2.55%
Stem 74.24% -6.92% 71.36% -10.50% 77.95% -2.23% 76.84% -3.62%
RCS 67.12% -15.84% 66.81% -16.20% 75.24% -5.64% 75.43% -5.39%
KCS 67.01% -15.98% 67.26% -15.64% 75.82% -4.91% 75.60% -5.19%
CD 69.35% -13.06% 67.48% -15.37% 75.76% -4.98% 75.54% -5.26%
RW 76.46% -4.14% 73.68% -7.58% 78.39% -1.68% 77.98% -2.20%
BT 72.03% -9.70% 67.23% -15.68% 72.91% -8.56% 71.27% -10.61%
Paraphrase 72.00% -9.73% 66.45% -16.65% 73.05% -8.38% 71.63% -10.15%
Average 71.56% -10.28% 69.45% -12.89% 75.78% -4.95% 74.99% -5.95%
Typos 67.83% -14.96% 67.18% -15.74% 75.60% -5.17% 75.52% -5.28%

Table B.40: Retrieval accuracy and relative loss across types of noise for unaltered
(Regular), PreTrained Alignment (PT), Data Augmentation (DA), and Post Training
Contrastive Alignment (CAPOT) on NQ dataset with the recall set the size of 20

165

Noise Regular Loss PT Loss DA Loss CAPOT Loss
None 85.82% -0.19% 84.60% -1.61% 86.29% 0.36% 85.04% -1.09%
Determiner 83.43% -2.96% 81.91% -4.73% 84.79% -1.38% 83.66% -2.70%
Synonym 79.75% -7.25% 73.12% -14.95% 81.94% -4.70% 81.08% -5.70%
Lemma 82.96% -3.51% 84.27% -1.99% 85.32% -0.77% 84.96% -1.19%
Stem 82.96% -3.51% 82.08% -4.54% 85.32% -0.77% 84.68% -1.51%
RCS 78.78% -8.37% 78.95% -8.18% 83.93% -2.38% 83.49% -2.90%
KCS 78.03% -9.24% 79.11% -7.99% 83.55% -2.83% 83.32% -3.09%
CD 79.64% -7.37% 79.28% -7.79% 84.29% -1.96% 83.74% -2.61%
RW 85.04% -1.09% 83.74% -2.61% 85.51% -0.54% 85.07% -1.06%
BT 80.11% -6.83% 77.98% -9.31% 80.53% -6.34% 79.31% -7.76%
Paraphrase 81.30% -5.44% 78.78% -8.37% 81.69% -4.99% 80.78% -6.05%
Average 81.62% -5.07% 79.92% -7.05% 83.69% -2.67% 83.01% -3.46%
Typos 78.82% -8.33% 79.11% -7.99% 83.92% -2.39% 83.52% -2.86%

Table B.41: Retrieval accuracy and relative loss across types of noise for unaltered
(Regular), PreTrained Alignment (PT), Data Augmentation (DA), and Post Training
Contrastive Alignment (CAPOT) on NQ dataset with the recall set the size of 100

Noise Regular Loss PT Loss DA Loss CAPOT Loss
None 88.25% 0.00% 87.01% -1.41% 86.29% -2.22% 87.23% -1.16%
Determiner 85.99% -2.56% 84.88% -3.82% 86.73% -1.72% 86.43% -2.07%
Synonym 82.83% -6.15% 82.11% -6.96% 84.65% -4.08% 84.07% -4.73%
Lemma 85.13% -3.54% 86.48% -2.00% 87.37% -1.00% 87.23% -1.16%
Stem 85.72% -2.87% 84.88% -3.82% 87.37% -1.00% 87.04% -1.38%
RCS 81.96% -7.13% 82.44% -6.59% 85.96% -2.60% 85.71% -2.88%
KCS 81.52% -7.63% 82.52% -6.49% 85.82% -2.76% 86.12% -2.41%
CD 82.04% -7.04% 82.41% -6.62% 86.23% -2.29% 86.65% -1.82%
RW 87.34% -1.03% 86.37% -2.13% 87.40% -0.97% 87.51% -0.84%
BT 82.54% -6.47% 80.64% -8.63% 82.71% -6.27% 82.05% -7.03%
Paraphrase 84.09% -4.72% 82.19% -6.87% 83.91% -4.92% 83.77% -5.08%
Average 83.91% -4.91% 83.49% -5.39% 85.81% -2.76% 85.66% -2.94%
Typos 81.84% -7.27% 82.46% -6.57% 86.00% -2.55% 86.16% -2.37%

Table B.42: Retrieval accuracy and relative loss across types of noise for unaltered
(Regular), PreTrained Alignment (PT), Data Augmentation (DA), and Post Training
Contrastive Alignment (CAPOT) on NQ dataset with the recall set the size of 200

166

Noise Regular Loss PT Loss DA Loss CAPOT Loss
None 79.40% 0.00% 73.52% -7.41% 76.16% -4.08% 78.53% -1.10%
Determiner 77.36% -2.57% 71.54% -9.90% 74.37% -6.34% 77.76% -2.07%
Synonym 75.11% -5.41% 69.17% -12.89% 73.22% -7.79% 75.97% -4.33%
Lemma 79.06% -0.43% 73.41% -7.54% 76.14% -4.10% 78.69% -0.90%
Stem 78.21% -1.50% 72.57% -8.60% 75.74% -4.60% 78.24% -1.46%
RCS 72.64% -8.51% 67.60% -14.86% 73.12% -7.91% 76.74% -3.35%
KCS 72.34% -8.89% 67.87% -14.52% 73.40% -7.55% 76.90% -3.15%
CD 73.14% -7.88% 67.86% -14.53% 73.31% -7.68% 76.47% -3.69%
RW 78.05% -1.70% 72.80% -8.31% 75.23% -5.25% 78.74% -0.83%
BT 74.05% -6.74% 68.13% -14.19% 70.65% -11.02% 73.56% -7.35%
Paraphrase 75.10% -5.41% 68.66% -13.52% 71.65% -9.76% 74.19% -6.56%
Average 75.51% -4.90% 69.96% -11.89% 73.68% -7.20% 76.73% -3.37%
Typos 72.71% -8.43% 67.78% -14.64% 73.28% -7.71% 76.71% -3.39%

Table B.43: Retrieval accuracy and relative loss across types of noise for unaltered
(Regular), PreTrained Alignment (PT), Data Augmentation (DA), and Post Training
Contrastive Alignment (CAPOT) on TriviaQA dataset with the recall set the size of 20

Noise Regular Loss PT Loss DA Loss CAPOT Loss
None 84.88% -0.15% 81.70% -3.89% 82.93% -2.45% 84.85% -0.19%
Determiner 83.70% -1.54% 80.49% -5.32% 81.71% -3.88% 84.25% -0.90%
Synonym 82.27% -3.23% 78.51% -7.64% 80.78% -4.97% 83.12% -2.23%
Lemma 84.68% -0.39% 81.67% -3.93% 82.85% -2.54% 84.93% -0.10%
Stem 84.20% -0.95% 81.09% -4.61% 82.67% -2.75% 84.82% -0.22%
RCS 80.92% -4.81% 77.83% -8.45% 81.23% -4.44% 83.72% -1.52%
KCS 81.19% -4.49% 77.88% -8.39% 81.29% -4.38% 83.95% -1.25%
CD 81.30% -4.37% 78.22% -7.99% 81.19% -4.49% 83.75% -1.48%
RW 84.20% -0.95% 81.17% -4.51% 82.56% -2.88% 84.86% -0.18%
BT 80.12% -5.75% 76.72% -9.76% 78.24% -7.97% 80.16% -5.70%
Paraphrase 82.21% -3.30% 78.43% -7.74% 79.80% -6.13% 82.29% -3.20%
Average 82.48% -2.98% 79.20% -6.83% 81.23% -4.44% 83.58% -1.68%
Typos 81.14% -4.56% 77.98% -8.28% 81.24% -4.44% 83.81% -1.42%

Table B.44: Retrieval accuracy and relative loss across types of noise for unaltered
(Regular), PreTrained Alignment (PT), Data Augmentation (DA), and Post Training
Contrastive Alignment (CAPOT) on TriviaQA dataset with the recall set the size of 100

167

Noise Regular Loss PT Loss DA Loss CAPOT Loss
None 86.66% 0.00% 84.03% -3.04% 84.96% -1.97% 86.60% -0.07%
Determiner 85.68% -1.13% 83.14% -4.06% 84.13% -2.92% 86.43% -0.26%
Synonym 84.55% -2.44% 81.43% -6.04% 83.18% -4.02% 85.32% -1.55%
Lemma 86.50% -0.18% 83.97% -3.10% 84.89% -2.04% 86.67% 0.01%
Stem 86.18% -0.56% 83.59% -3.55% 84.77% -2.18% 86.56% -0.11%
RCS 83.53% -3.61% 81.13% -6.38% 83.52% -3.62% 85.91% -0.87%
KCS 83.80% -3.30% 81.18% -6.32% 83.70% -3.42% 85.99% -0.77%
CD 83.84% -3.25% 81.30% -6.19% 83.60% -3.53% 85.82% -0.97%
RW 86.08% -0.67% 83.74% -3.37% 84.57% -2.42% 86.69% 0.03%
BT 82.64% -4.63% 79.41% -8.36% 80.60% -7.00% 82.37% -4.95%
Paraphrase 84.36% -2.65% 81.45% -6.01% 82.66% -4.62% 84.66% -2.30%
Average 84.72% -2.24% 82.03% -5.34% 83.56% -3.57% 85.64% -1.17%
Typos 83.72% -3.39% 81.20% -5.47% 83.61% -3.64% 85.91% -0.87%

Table B.45: Retrieval accuracy and relative loss across types of noise for unaltered
(Regular), PreTrained Alignment (PT), Data Augmentation (DA), and Post Training
Contrastive Alignment (CAPOT) on TriviaQA dataset with the recall set the size of 200

Noise Regular Loss PT Loss DA Loss CAPOT Loss
None 32.39% 0.00% 19.05% -41.18% 20.70% -35.89% 25.38% -21.39%
Determiner 25.85% -20.20% 15.50% -52.15% 16.42% -49.15% 25.25% -21.80%
Synonym 20.63% -36.30% 11.56% -64.30% 13.56% -58.01% 17.92% -44.49%
Lemma 31.50% -2.74% 18.76% -42.07% 20.66% -36.03% 25.90% -19.80%
Stem 26.87% -17.04% 16.72% -48.39% 18.68% -42.14% 25.13% -22.16%
RCS 16.85% -47.96% 12.09% -62.66% 15.13% -53.16% 22.91% -29.05%
KCS 16.00% -50.62% 12.16% -62.46% 14.86% -53.97% 22.63% -29.91%
CD 18.00% -44.41% 12.52% -61.36% 15.02% -53.49% 22.46% -30.45%
RW 31.19% -3.70% 18.41% -43.17% 19.91% -38.35% 28.18% -12.72%
BT 26.76% -17.40% 15.52% -52.08% 16.91% -47.63% 20.80% -35.58%
Paraphrase 26.56% -17.99% 15.51% -52.13% 16.82% -47.90% 21.05% -34.79%
Average 24.02% -25.84% 14.87% -54.08% 16.80% -47.98% 23.22% -28.08%
Typos 16.95% -47.66% 12.26% -62.16% 15.00% -53.54% 22.67% -29.80%

Table B.46: MRR@10 and relative loss across types of noise for unaltered (Regular),
PreTrained Alignment (PT), Data Augmentation (DA), and Post Training Contrastive
Alignment (CAPOT) on MSMARCO dataset.

168

Noise Regular Loss PT Loss DA Loss CAPOT Loss
None 32.39% 0.00% 19.05% -41.18% 20.70% -35.89% 25.38% -21.39%
Determiner 25.85% -20.20% 15.50% -52.15% 16.42% -49.15% 25.25% -21.80%
Synonym 20.63% -36.30% 11.56% -64.30% 13.56% -58.01% 17.92% -44.49%
Lemma 31.50% -2.74% 18.76% -42.07% 20.66% -36.03% 25.90% -19.80%
Stem 26.87% -17.04% 16.72% -48.39% 18.68% -42.14% 25.13% -22.16%
RCS 16.85% -47.96% 12.09% -62.66% 15.13% -53.16% 22.91% -29.05%
KCS 16.00% -50.62% 12.16% -62.46% 14.86% -53.97% 22.63% -29.91%
CD 18.00% -44.41% 12.52% -61.36% 15.02% -53.49% 22.46% -30.45%
RW 31.19% -3.70% 18.41% -43.17% 19.91% -38.35% 28.18% -12.72%
BT 26.76% -17.40% 15.52% -52.08% 16.91% -47.63% 20.80% -35.58%
Paraphrase 26.56% -17.99% 15.51% -52.13% 16.82% -47.90% 21.05% -34.79%
Average 24.02% -25.84% 14.87% -54.08% 16.80% -47.98% 23.22% -28.08%
Typos 16.95% -47.66% 12.26% -62.16% 15.00% -53.54% 22.67% -29.80%

Table B.47: Retrieval accuracy and relative loss across types of noise for unaltered
(Regular), PreTrained Alignment (PT), Data Augmentation (DA), and Post Training
Contrastive Alignment (CAPOT) on MSMARCO dataset with the recall set the size of 20

Noise Regular Loss PT Loss DA Loss CAPOT Loss
None 88.79% 0.00% 67.87% -23.57% 71.83% -19.10% 79.70% -10.24%
Determiner 77.66% -12.54% 58.57% -34.04% 63.02% -29.02% 76.99% -13.29%
Synonym 68.09% -23.31% 47.12% -46.93% 55.01% -38.04% 61.96% -30.21%
Lemma 87.54% -1.41% 67.45% -24.03% 71.73% -19.21% 80.87% -8.92%
Stem 79.30% -10.69% 62.36% -29.76% 68.05% -23.36% 79.23% -10.77%
RCS 58.00% -34.68% 47.56% -46.43% 58.81% -33.76% 72.36% -18.50%
KCS 56.09% -36.83% 47.69% -46.29% 59.03% -33.52% 72.99% -17.79%
CD 61.97% -30.21% 49.99% -43.70% 58.77% -33.81% 71.99% -18.92%
RW 87.57% -1.37% 66.89% -24.66% 70.74% -20.32% 83.48% -5.98%
BT 78.60% -11.47% 57.97% -34.72% 62.49% -29.62% 68.91% -22.39%
Paraphrase 79.67% -10.27% 59.04% -33.51% 63.74% -28.21% 70.57% -20.52%
Average 74.84% -15.71% 56.46% -36.41% 63.14% -28.89% 73.94% -16.73%
Typos 58.68% -33.91% 48.41% -45.47% 58.87% -33.70% 72.45% -18.40%

Table B.48: Retrieval accuracy and relative loss across types of noise for unaltered
(Regular), PreTrained Alignment (PT), Data Augmentation (DA), and Post Training
Contrastive Alignment (CAPOT) on MSMARCO dataset with the recall set the size of 100

169

Noise Regular Loss PT Loss DA Loss CAPOT Loss
None 93.78% 0.00% 74.99% -20.04% 79.57% -15.15% 85.69% -8.63%
Determiner 83.56% -10.89% 65.60% -30.05% 70.56% -24.76% 82.68% -11.84%
Synonym 74.54% -20.52% 54.54% -41.84% 62.58% -33.27% 68.72% -26.72%
Lemma 92.57% -1.29% 74.61% -20.44% 79.31% -15.43% 86.68% -7.57%
Stem 84.70% -9.69% 69.81% -25.56% 75.62% -19.37% 85.24% -9.10%
RCS 64.42% -31.31% 54.66% -41.72% 66.40% -29.19% 78.87% -15.90%
KCS 62.87% -32.96% 54.67% -41.70% 67.32% -28.21% 79.48% -15.24%
CD 68.36% -27.11% 56.81% -39.43% 66.91% -28.66% 78.11% -16.71%
RW 92.63% -1.23% 74.27% -20.80% 78.04% -16.79% 89.43% -4.64%
BT 84.08% -10.34% 65.56% -30.09% 70.44% -24.88% 75.27% -19.74%
Paraphrase 85.82% -8.49% 67.15% -28.40% 71.35% -23.92% 77.48% -17.38%
Average 80.67% -13.98% 63.77% -32.00% 70.85% -24.45% 80.20% -14.48%
Typos 65.22% -30.46% 55.38% -40.95% 66.88% -28.69% 78.82% -15.95%

Table B.49: Retrieval accuracy and relative loss across types of noise for unaltered
(Regular), PreTrained Alignment (PT), Data Augmentation (DA), and Post Training
Contrastive Alignment (CAPOT) on MSMARCO dataset with the recall set the size of 200

Noise Baseline Loss CAPOT Loss CAPOT-ORCAS Loss
None 79.40% 0.00% 78.53% -1.10% 76.73% -3.36%
Determiner 77.36% -2.57% 77.76% -2.07% 76.04% -4.24%
Synonym 75.11% -5.41% 75.97% -4.33% 81.23% 2.31%
Lemma 79.06% -0.43% 78.69% -0.90% 76.95% -3.09%
Stem 78.21% -1.50% 78.24% -1.46% 76.68% -3.42%
RCS 72.64% -8.51% 76.74% -3.35% 75.83% -4.49%
KCS 72.34% -8.89% 76.90% -3.15% 75.62% -4.76%
CD 73.14% -7.88% 76.47% -3.69% 75.28% -5.19%
RW 78.05% -1.70% 78.74% -0.83% 76.81% -3.27%
BT 74.05% -6.74% 73.56% -7.35% 71.48% -9.97%
Paraphrase 75.10% -5.41% 74.19% -6.56% 71.95% -9.38%
Average 75.51% -4.90% 76.73% -3.37% 75.79% -4.55%
Typos 72.71% -8.43% 76.71% -3.39% 75.58% -4.82%

Table B.50: Retrieval accuracy and relative loss across types of noise for unaltered
(Regular), Post Training Contrastive Alignment (CAPOT), and Post Training Contrastive
Alignment (CAPOT) using Noisy-ORCAS on TriviaQA dataset with the recall set the size
of 20

170

Noise Baseline Loss CAPOT Loss CAPOT-ORCAS Loss
None 85.01% 0.00% 84.85% -0.19% 85.63% 0.73%
Determiner 83.83% -1.38% 84.25% -0.90% 83.27% -2.05%
Synonym 82.39% -3.08% 83.12% -2.23% 81.23% -4.44%
Lemma 84.81% -0.23% 84.93% -0.10% 83.62% -1.63%
Stem 84.36% -0.77% 84.82% -0.22% 83.58% -1.69%
RCS 80.95% -4.77% 83.72% -1.52% 85.04% 0.04%
KCS 81.16% -4.53% 83.95% -1.25% 85.39% 0.45%
CD 81.33% -4.33% 83.75% -1.48% 82.66% -2.77%
RW 82.99% -2.37% 84.86% -0.18% 83.56% -1.71%
BT 80.60% -5.19% 80.16% -5.70% 78.77% -7.34%
Paraphrase 82.40% -3.07% 82.29% -3.20% 80.33% -5.50%
Average 82.48% -2.97% 83.58% -1.68% 82.74% -2.66%
Typos 81.15% -4.54% 83.81% -1.42% 84.36% -0.76%

Table B.51: Retrieval accuracy and relative loss across types of noise for unaltered
(Regular), Post Training Contrastive Alignment (CAPOT), and Post Training Contrastive
Alignment (CAPOT) using Noisy-ORCAS on TriviaQA dataset with the recall set the size
of 100

Noise Baseline Loss CAPOT Loss CAPOT-ORCAS Loss
None 86.66% 0.00% 86.60% -0.07% 83.52% -3.62%
Determiner 85.68% -1.13% 86.43% -0.26% 85.49% -1.36%
Synonym 84.55% -2.44% 85.32% -1.55% 83.68% -3.44%
Lemma 86.50% -0.18% 86.67% 0.01% 85.75% -1.05%
Stem 86.18% -0.56% 86.56% -0.11% 85.57% -1.25%
RCS 83.53% -3.61% 85.91% -0.87% 82.82% -4.44%
KCS 83.80% -3.30% 85.99% -0.77% 83.09% -4.12%
CD 83.84% -3.25% 85.82% -0.97% 84.88% -2.05%
RW 86.08% -0.67% 86.69% 0.03% 85.48% -1.37%
BT 82.64% -4.63% 82.37% -4.95% 81.15% -6.36%
Paraphrase 84.36% -2.65% 84.66% -2.30% 83.21% -3.99%
Average 84.72% -2.24% 85.64% -1.17% 84.11% -2.94%
Typos 83.72% -3.39% 85.91% -0.87% 83.60% -3.53%

Table B.52: Retrieval accuracy and relative loss across types of noise for unaltered
(Regular), Post Training Contrastive Alignment (CAPOT), and Post Training Contrastive
Alignment (CAPOT) using Noisy-ORCAS on TriviaQA dataset with the recall set the size
of 200

171

APPENDIX C: SCALING MULTI-LINGUAL CLASSIFICATION AND
ABSTRACTIVE SUMMARIZATION TO WEB-SCALE WORKLOADS

C.1 TO ASYMMETRY AND BEYOND: STRUCTURED PRUNING OF SEQUENCE
TO SEQUENCE MODELS FOR IMPROVED INFERENCE EFFICIENCY

C.1.1 Training Details

In all of our experiments, we leverage the parameters shown in C.2 on the datasets shown

in C.1

Dataset Train Validation Test Source Summary Compression
CNNDM 76 287,113 13,368 11,490 691.87 51.57 14.80
XSUM 77 204,045 11,332 11,334 373.86 21.09 18.70
QIWS 10000 1000 1000 1410.12 73.78 19.11

Table C.1: Statistics for the abstractive summarization datasets which we study. Source
and Summary refer to the number of words in each, and the compression factor is the ratio
between the two on the train portion of the dataset.

C.1.2 Scale and Abstractive Summarization

The role of model scale on performance on the QIWS, CNN/DM, and XSUM datasets

can be found in tables C.4,C.3, and C.5

3,10 Epochs

Initial learning rate 1e-4
Learning rate schedule constant

Batch size 64

Weight Decay 0.01, 0.05, 0.1

Table C.2: Training Hyperparameters for summarization experiments

172

Model R-1 Impact R-2 Impact RSL Impact R-L Impact Genl Impact
small 50.22 0.00% 29.03 0.00% 45.87 0.00% 40.19 0.00% 62.79 0.00%
base 54.84 9.20% 34.19 17.77% 50.38 9.83% 44.68 11.18% 62.91 0.19%
large 57.81 15.11% 37.37 28.72% 53.14 15.84% 48.16 19.84% 62.85 0.10%

Table C.3: Impact of Scale on summarization performance on QIWS dataset

Model R-1 Impact R-2 Impact RSL Impact R-L Impact Genl Impact
small 39.31 0.00% 17.55 0.00% 36.50 0.00% 27.97 0.00% 77.62 0.00%
base 42.14 7.20% 19.77 12.63% 39.32 7.75% 30.15 7.80% 71.86 -7.42%
large 43.99 11.90% 21.15 20.51% 41.12 12.68% 31.64 13.11% 71.01 -8.51%

Table C.4: Impact of Scale on summarization performance on CNNDM dataset

Model R-1 Impact R-2 Impact RSL Impact R-L Impact Genl Impact
small 33.27 0.00% 11.09 0.00% 26.17 0.00% 26.17 0.00% 28.01 0.00%
base 38.78 16.56% 15.69 41.45% 31.14 19.01% 31.15 19.04% 25.92 -7.48%
large 39.71 19.36% 16.34 47.36% 31.72 21.21% 31.72 21.23% 26.74 -4.54%

Table C.5: Impact of Scale on summarization performance on XSUM dataset

C.1.3 Asymmetry In Summarization

The role of the model scale, structural pruning, and asymmetry on performance on the

QIWS, CNN/DM, and XSUM datasets can be found in tables C.12,C.13,C.14,C.6,C.7,C.8,C.9,C.10,

and C.11.

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
8 8 39.31 0.00% 17.55 0.00% 36.50 0.00% 27.97 0.00% 77.62 0.00%
8 6 39.33 0.04% 17.68 0.74% 36.54 0.13% 28.21 0.87% 76.46 -1.49%
8 5 38.75 -1.42% 17.27 -1.64% 36.01 -1.32% 27.91 -0.23% 78.63 1.31%
8 4 37.18 -5.42% 16.40 -6.57% 34.46 -5.58% 27.22 -2.70% 75.69 -2.48%
8 2 35.47 -9.76% 15.35 -12.58% 32.78 -10.17% 26.28 -6.06% 75.08 -3.27%
8 1 29.27 -25.55% 11.33 -35.43% 26.97 -26.09% 22.33 -20.18% 67.99 -12.40%
6 8 39.59 0.71% 17.69 0.81% 36.80 0.83% 28.08 0.39% 77.81 0.25%
5 8 39.12 -0.47% 17.35 -1.16% 36.38 -0.31% 27.73 -0.88% 76.22 -1.80%
4 8 38.57 -1.87% 16.80 -4.30% 35.79 -1.92% 27.15 -2.92% 78.13 0.67%
2 8 36.82 -6.32% 15.54 -11.49% 34.00 -6.84% 25.79 -7.78% 77.77 0.20%
1 8 33.58 -14.58% 13.31 -24.17% 30.96 -15.16% 23.72 -15.19% 70.79 -8.79%
6 6 38.59 -1.82% 17.07 -2.77% 35.80 -1.91% 27.55 -1.52% 77.93 0.41%
5 5 37.31 -5.08% 16.20 -7.72% 34.60 -5.19% 26.83 -4.07% 79.83 2.85%
4 4 35.28 -10.25% 14.91 -15.05% 32.54 -10.85% 25.74 -7.98% 74.61 -3.88%
2 2 30.79 -21.66% 11.97 -31.83% 28.03 -23.19% 22.88 -18.19% 78.53 1.18%
1 1 21.30 -45.80% 6.05 -65.55% 19.57 -46.39% 16.62 -40.56% 60.03 -22.66%

Table C.6: The relation between pruning asymmetry and symmetry for a FLAN-T5 small
model on the CNN/DailyMail Abstractive Summarization Dataset

C.1.4 Inference Benchmarks

Detailed variations in latency measurements across batch size, scale, structural pruning,

and asymmetry on performance on the QIWS, CNN/DM, and XSUM datasets can be found

173

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
12 12 42.14 0.00% 19.77 0.00% 39.32 0.00% 30.15 0.00% 71.86 0.00%
12 10 42.49 0.84% 19.92 0.76% 39.62 0.75% 30.27 0.40% 74.38 3.51%
12 8 42.28 0.34% 19.85 0.42% 39.48 0.41% 30.35 0.64% 70.74 -1.56%
12 6 41.30 -1.99% 18.85 -4.63% 38.44 -2.25% 29.16 -3.28% 74.76 4.04%
12 4 40.31 -4.34% 18.68 -5.49% 37.71 -4.10% 29.45 -2.33% 67.52 -6.04%
12 2 36.75 -12.80% 16.48 -16.62% 34.22 -12.97% 27.61 -8.43% 67.67 -5.82%
10 12 42.49 0.84% 19.92 0.76% 39.62 0.75% 30.27 0.40% 74.38 3.51%
8 12 42.27 0.31% 19.67 -0.50% 39.41 0.22% 29.99 -0.52% 74.34 3.45%
6 12 41.30 -1.99% 18.85 -4.63% 38.44 -2.25% 29.16 -3.28% 74.76 4.04%
4 12 40.51 -3.86% 18.22 -7.86% 37.66 -4.23% 28.42 -5.75% 77.04 7.21%
2 12 39.03 -7.38% 17.06 -13.73% 36.15 -8.08% 27.23 -9.69% 73.36 2.09%
10 10 42.19 0.13% 19.72 -0.26% 39.38 0.14% 30.12 -0.11% 73.56 2.37%
8 8 41.64 -1.18% 19.17 -3.01% 38.83 -1.26% 29.60 -1.84% 74.59 3.80%
6 6 39.33 -6.67% 17.46 -11.71% 36.67 -6.74% 28.07 -6.92% 72.27 0.57%
4 4 36.99 -12.23% 15.87 -19.74% 34.43 -12.43% 26.63 -11.68% 69.08 -3.87%
2 2 30.99 -26.45% 12.23 -38.12% 28.43 -27.71% 23.28 -22.79% 66.70 -7.18%

Table C.7: The relation between pruning asymmetry and symmetry for a FLAN-T5 base
model on the CNN/DailyMail Abstractive Summarization Dataset

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
24 24 43.99 0.00% 21.15 0.00% 41.12 0.00% 31.64 0.00% 71.01 0.00%
24 20 44.15 0.37% 21.30 0.69% 41.31 0.46% 31.73 0.31% 71.20 0.26%
24 16 44.10 0.27% 21.32 0.81% 41.29 0.39% 31.83 0.60% 70.19 -1.16%
24 12 43.74 -0.57% 21.08 -0.34% 40.97 -0.38% 31.60 -0.13% 69.99 -1.44%
24 8 43.35 -1.45% 20.67 -2.27% 40.58 -1.32% 31.29 -1.11% 72.88 2.63%
24 4 41.42 -5.84% 19.49 -7.88% 38.78 -5.69% 30.35 -4.06% 70.39 -0.89%
20 24 44.10 0.26% 21.13 -0.12% 41.28 0.38% 31.58 -0.17% 71.04 0.04%
16 24 43.76 -0.52% 20.83 -1.53% 40.92 -0.49% 31.22 -1.31% 71.59 0.80%
12 24 43.33 -1.50% 20.53 -2.94% 40.43 -1.68% 30.82 -2.58% 73.28 3.20%
8 24 42.46 -3.48% 19.74 -6.67% 39.64 -3.60% 29.98 -5.23% 73.47 3.46%
4 24 41.25 -6.23% 18.68 -11.69% 38.30 -6.86% 28.78 -9.04% 76.05 7.08%
20 20 44.10 0.25% 21.23 0.34% 41.25 0.32% 31.65 0.05% 70.90 -0.16%
16 16 43.69 -0.67% 20.90 -1.19% 40.86 -0.64% 31.30 -1.06% 71.85 1.18%
12 12 42.81 -2.67% 20.13 -4.84% 39.97 -2.80% 30.58 -3.33% 72.81 2.53%
8 8 40.57 -7.78% 18.47 -12.70% 37.82 -8.04% 28.96 -8.46% 73.39 3.34%
4 4 36.11 -17.91% 15.51 -26.68% 33.48 -18.59% 26.30 -16.88% 68.58 -3.43%

Table C.8: The relation between pruning asymmetry and symmetry for a FLAN-T5 large
model on the CNN/DailyMail Abstractive Summarization Dataset

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
8 8 50.22 100.00% 29.03 100.00% 45.87 100.00% 40.19 100.00% 62.79 100.00%
8 6 50.20 99.96% 28.90 99.55% 45.80 99.83% 40.45 100.65% 62.81 100.03%
8 5 49.74 99.04% 28.56 98.40% 45.55 99.30% 40.27 100.20% 62.68 99.83%
8 4 48.59 96.74% 27.94 96.24% 44.65 97.33% 39.27 97.70% 62.67 99.82%
8 2 45.36 90.32% 24.85 85.61% 41.38 90.21% 36.92 91.87% 62.68 99.84%
8 1 34.47 68.64% 15.41 53.08% 31.00 67.58% 27.68 68.88% 61.68 98.24%
6 8 49.32 98.21% 27.92 96.17% 44.72 97.48% 39.10 97.28% 62.90 100.18%
5 8 49.08 97.72% 27.75 95.60% 44.29 96.56% 38.76 96.45% 62.87 100.13%
4 8 46.40 92.39% 25.20 86.82% 41.81 91.14% 36.71 91.34% 62.74 99.93%
2 8 45.08 89.77% 23.67 81.55% 40.44 35.31% 35.31 87.85% 62.82 100.06%
1 8 39.81 79.26% 18.23 62.79% 35.39 77.14% 29.97 74.56% 62.83 100.07%
6 6 48.47 96.51% 26.82 92.38% 43.88 95.66% 38.38 95.49% 62.81 100.04%
5 5 47.55 94.68% 26.62 91.72% 43.13 94.02% 37.99 94.51% 62.67 99.81%
4 4 42.33 84.28% 23.12 79.64% 39.89 86.95% 33.39 83.08% 62.71 99.88%
2 2 39.69 79.02% 19.14 65.92% 35.49 77.36% 30.90 76.89% 62.79 100.00%
1 1 22.98 45.75% 6.09 20.99% 20.52 44.74% 18.36 45.69% 61.90 98.58%

Table C.9: The relation between pruning asymmetry and symmetry for a FLAN-T5 small
model on the Query Independent Web Snippets Abstractive Summarization Dataset

in tables C.15,C.16, C.17, C.18,C.19, C.20, C.23, C.21, and C.22.

C.1.5 Responsible NLP Research - Reproducibility Checklist

Datasets. We perform our experimentation on well-established benchmarks using many

broad domains and a proprietary web summarization dataset. We do not modify or augment

174

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
12 12 54.84 0.00% 34.19 0.00% 50.38 0.00% 44.68 0.00% 62.91 0.00%
12 10 55.02 0.33% 34.00 -0.56% 50.20 -0.35% 44.67 -0.02% 62.79 -0.19%
12 8 55.97 2.05% 34.50 0.91% 51.12 1.48% 44.90 0.48% 62.75 -0.24%
12 6 54.54 -0.55% 33.70 -1.42% 49.94 -0.87% 44.19 -1.11% 62.81 -0.16%
12 4 52.64 -4.01% 31.93 -6.62% 47.28 -6.16% 42.98 -3.81% 62.85 -0.09%
12 2 49.02 -10.61% 28.05 -17.97% 44.98 -10.71% 40.36 -9.68% 62.89 -0.02%
10 12 54.23 -1.11% 33.57 -1.82% 49.93 -0.89% 44.00 -1.52% 62.87 -0.05%
8 12 54.02 -1.50% 33.06 -3.31% 49.49 -1.76% 43.80 -1.96% 62.85 -0.09%
6 12 48.74 -11.13% 32.23 -5.72% 48.74 -3.26% 42.92 -3.95% 62.82 -0.14%
4 12 47.93 -12.61% 27.47 -19.65% 46.21 -8.28% 39.77 -11.00% 62.79 -0.19%
2 12 47.45 -13.48% 25.57 -25.22% 43.20 -14.26% 37.69 -15.66% 62.77 -0.22%
10 10 54.25 -1.08% 32.88 -3.82% 49.51 -1.72% 43.24 -3.23% 62.82 -0.13%
8 8 53.89 -1.73% 32.81 -4.04% 49.32 -2.10% 43.77 -2.04% 62.82 -0.14%
6 6 50.26 -8.34% 28.70 -16.05% 45.62 -9.45% 40.05 -10.37% 62.82 -0.13%
4 4 47.77 -12.89% 26.53 -22.40% 43.34 -13.97% 37.85 -15.29% 62.84 -0.10%
2 2 39.59 -27.80% 19.64 -42.57% 35.80 -28.95% 31.38 -29.78% 62.85 -0.09%

Table C.10: The relation between pruning asymmetry and symmetry for a FLAN-T5 base
model on the Query Independent Web Snippets Abstractive Summarization Dataset

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
24 24 57.81 100.00% 37.37 100.00% 53.14 100.00% 48.16 100.00% 62.85 100.00%
24 20 58.21 100.69% 37.59 100.59% 53.44 100.58% 48.46 100.62% 62.80 99.91%
24 16 57.25 99.04% 36.56 97.84% 52.71 99.19% 47.71 99.06% 62.83 99.97%
24 12 56.78 98.21% 35.74 95.64% 52.34 98.49% 46.81 97.18% 62.78 99.88%
24 8 56.19 97.19% 35.13 94.01% 51.59 97.08% 45.68 94.85% 62.79 99.90%
24 4 54.53 94.32% 33.69 90.15% 50.00 94.10% 44.65 92.71% 62.83 99.97%
20 24 57.34 99.19% 36.39 97.38% 52.66 99.10% 47.28 98.18% 62.81 99.93%
16 24 56.26 97.33% 35.90 96.07% 51.04 96.04% 46.82 97.22% 62.81 99.93%
12 24 55.31 95.67% 34.22 91.58% 50.60 95.23% 45.11 93.66% 62.88 100.04%
8 24 54.80 94.79% 33.42 89.43% 49.95 94.00% 44.11 91.59% 62.70 99.76%
4 24 51.40 88.92% 30.31 81.11% 46.49 87.48% 41.12 85.38% 62.70 99.75%
20 20 56.81 98.28% 36.32 97.20% 52.21 98.25% 46.82 97.21% 62.69 99.74%
16 16 56.10 97.05% 35.98 96.29% 51.05 96.07% 45.89 95.28% 62.71 99.76%
12 12 54.16 93.70% 33.00 88.31% 49.58 93.31% 44.80 93.02% 62.77 99.87%
8 8 51.77 89.55% 30.78 82.38% 47.31 89.03% 41.32 85.79% 62.73 99.81%
4 4 45.70 79.06% 22.77 60.94% 41.36 77.84% 36.09 74.94% 62.70 99.76%

Table C.11: The relation between pruning asymmetry and symmetry for a FLAN-T5 large
model on the Query Independent Web Snippets Abstractive Summarization Dataset

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
8 8 33.27 0.00% 11.09 0.00% 26.17 0.00% 26.17 0.00% 28.01 0.00%
8 6 33.79 1.56% 11.61 4.74% 26.73 2.14% 26.74 2.18% 27.79 -0.78%
8 5 33.47 0.61% 11.43 3.12% 26.64 1.81% 26.65 1.83% 27.40 -2.18%
8 3 33.04 -0.69% 11.24 1.36% 26.26 0.36% 26.27 0.38% 28.08 0.26%
8 2 31.48 -5.36% 10.53 -5.02% 25.39 -2.99% 25.38 -3.01% 26.58 -5.13%
8 1 23.16 -30.39% 6.03 -45.58% 19.02 -27.32% 19.02 -27.33% 36.68 30.93%
5 8 33.31 0.13% 11.18 0.82% 26.16 -0.04% 26.16 -0.06% 28.31 1.08%
5 8 32.55 -2.15% 10.61 -4.32% 25.50 -2.55% 25.50 -2.55% 28.35 1.19%
3 8 31.82 -4.36% 10.11 -8.84% 24.92 -4.78% 24.92 -4.77% 28.43 1.50%
2 8 29.65 -10.87% 8.59 -22.48% 23.02 -12.02% 23.02 -12.03% 27.90 -0.39%
1 8 28.46 -14.46% 7.70 -30.57% 22.09 -15.60% 22.09 -15.59% 27.87 -0.50%
6 6 32.50 -2.29% 10.73 -3.24% 25.67 -1.90% 25.68 -1.88% 28.07 0.19%
5 5 31.77 -4.50% 10.19 -8.04% 25.14 -3.94% 25.14 -3.95% 28.09 0.29%
3 3 30.42 -8.57% 9.50 -14.31% 24.16 -7.66% 24.16 -7.67% 27.91 -0.38%
2 2 26.71 -19.70% 7.31 -34.09% 21.38 -18.30% 21.38 -18.31% 26.35 -5.93%
1 1 19.54 -41.26% 4.00 -63.91% 16.00 -38.86% 16.00 -38.87% 35.73 27.54%

Table C.12: The relation between pruning asymmetry and symmetry for a FLAN-T5 small
model on the Extreme Summarization (XSUM) Abstractive Summarization Dataset

public benchmarks in any dataset.

Models. The model used as a starting point for all of our experiments is the family of

flan-t5 models, publicly available via HuggingFace Hub 78. All other models presented in

this section are openly-available in the hugging face hub.

78https://huggingface.co/bert-base-uncased

175

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
12 12 38.78 0.00% 15.69 0.00% 31.14 0.00% 31.15 0.00% 25.92 0.00%
12 10 38.46 -0.83% 15.27 -2.65% 30.70 -1.43% 30.71 -1.42% 26.72 3.11%
12 8 38.11 -1.72% 14.91 -4.97% 30.34 -2.59% 30.34 -2.60% 27.64 6.65%
12 6 38.55 -0.58% 15.40 -1.83% 30.87 -0.87% 30.88 -0.87% 27.42 5.80%
12 4 38.04 -1.91% 15.19 -3.18% 30.63 -1.64% 29.65 -4.82% 26.40 1.85%
12 2 35.39 -8.74% 13.73 -12.47% 28.96 -7.02% 28.96 -7.03% 27.55 6.32%
10 12 39.04 0.68% 15.92 1.47% 31.22 0.24% 31.23 0.25% 26.89 3.75%
8 12 37.05 -4.45% 14.10 -10.09% 29.29 -5.95% 29.30 -5.93% 27.68 6.82%
6 12 36.45 -6.01% 13.84 -11.79% 28.96 -7.02% 28.96 -7.02% 27.21 4.99%
4 12 34.32 -11.48% 12.10 -22.88% 26.99 -13.35% 26.99 -13.34% 27.20 4.94%
2 12 31.88 -17.78% 10.27 -34.53% 24.85 -20.21% 24.85 -20.22% 28.22 8.88%
10 10 38.80 0.05% 15.72 0.22% 31.07 -0.25% 31.08 -0.23% 26.92 3.88%
8 8 37.21 -4.04% 14.30 -8.85% 29.55 -5.13% 29.54 -5.15% 27.40 5.72%
6 6 34.92 -9.95% 12.44 -20.68% 27.56 -11.51% 27.57 -11.50% 27.72 6.96%
4 4 32.48 -16.24% 10.67 -31.95% 25.49 -18.15% 25.50 -18.14% 27.98 7.98%
2 2 27.44 -29.23% 7.74 -50.65% 21.95 -29.51% 21.96 -29.52% 29.38 13.38%

Table C.13: The relation between pruning asymmetry and symmetry for a FLAN-T5 base
model on the Extreme Summarization (XSUM) Abstractive Summarization Dataset

lenc ldec R-1 Impact R-2 Impact RSL Impact R-L Impact GenL Impact
24 24 39.71 0.00% 16.34 0.00% 31.72 0.00% 31.72 0.01% 26.74 0.00%
24 20 43.18 8.74% 19.80 21.17% 35.21 11.01% 35.22 11.04% 25.91 -3.10%
24 16 42.73 7.59% 19.30 18.10% 34.76 9.58% 34.76 9.59% 26.40 -1.29%
24 12 42.34 6.61% 18.92 15.78% 34.52 8.84% 34.53 8.87% 25.49 -4.68%
24 8 41.30 4.00% 17.96 9.94% 33.73 6.34% 33.75 6.39% 25.02 -6.45%
24 4 39.55 -0.40% 16.47 0.77% 32.25 1.66% 32.25 1.68% 26.30 -1.64%
20 24 42.77 7.71% 19.43 18.90% 34.83 9.82% 34.84 9.83% 26.18 -2.09%
16 24 41.55 4.63% 18.33 12.17% 33.64 6.05% 33.65 6.07% 26.33 -1.53%
12 24 39.95 0.61% 16.90 3.40% 32.13 1.29% 32.14 1.31% 27.14 1.50%
8 24 37.57 -5.39% 14.97 -8.38% 29.94 -5.61% 29.94 -5.60% 25.99 -2.80%
4 24 34.81 -12.35% 12.52 -23.36% 27.32 -13.86% 27.32 -13.86% 27.61 3.25%
20 20 42.48 6.98% 19.18 17.39% 34.62 9.13% 34.62 9.13% 25.84 -3.36%
16 16 40.78 2.69% 17.56 7.44% 32.99 4.00% 33.00 4.02% 26.47 -1.00%
12 12 38.94 6.98% 15.89 -2.78% 31.21 -1.61% 31.22 -1.58% 26.59 -0.57%
8 8 34.65 -12.75% 12.15 -25.65% 27.36 -13.76% 27.36 -13.73% 28.16 5.30%
4 4 29.82 -24.91% 8.96 -45.14% 23.59 -25.62% 23.60 -25.60% 28.10 5.09%

Table C.14: The relation between pruning asymmetry and symmetry for a FLAN-T5 large
model on the Extreme Summarization (XSUM) Abstractive Summarization Dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
8 8 29.03 0.00% 524 3.95 1.00 653 2.49 1.00 729 5.12 1.00
8 6 28.90 -0.45% 406 1.28 1.29 514 5.02 1.27 583 2.47 1.25
8 5 28.56 -1.60% 348 2.34 1.51 455 1.6 1.44 527 1.85 1.38
8 4 27.94 -3.76% 293 3.35 1.79 394 6.32 1.66 469 2.65 1.55
8 2 24.85 -14.39% 195 1.61 2.69 353 3.38 1.85 426 6.38 1.71
8 1 15.41 -46.92% 132 0.959 3.97 211 2.82 3.09 389 2.94 1.87
6 8 27.92 -3.83% 512 5.15 1.02 626 4.19 1.04 684 2.81 1.07
5 8 27.75 -4.40% 508 3.56 1.03 617 4.91 1.06 666 4.16 1.09
4 8 25.20 -13.18% 514 3.55 1.02 603 4.52 1.08 639 2.08 1.14
2 8 23.67 -18.45% 514 514 1.02 585 5.36 1.12 608 4.45 1.20
1 8 18.23 -37.21% 510 5.81 1.03 574 4.21 1.14 595 7.06 1.23
6 6 26.82 -7.62% 407 5.26 1.29 496 8.77 1.32 548 1.97 1.33
5 5 26.62 -8.28% 346 6.84 1.51 430 3.54 1.52 480 12.4 1.52
4 4 23.12 -20.36% 375 4.25 1.40 441 6.92 1.48 478 10.6 1.53
2 2 19.14 -34.08% 402 2.05 1.30 452 9.84 1.44 476 8.29 1.53
1 1 6.09 -79.01% 134 6.2 3.91 527 3.03 1.24 549 13.4 1.33

Table C.15: Role of model symmetry in inference efficiency on FLAN-T5 small model on
the QIWS dataset

C.1.6 Computational Experiments

Our experimentation on finetuning our compressed models uses a single 40GB A100.

Finetuning time varies across datasets ranging from 1 hour for T5-small to 24 hours for

T5-Large.

176

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
12 12 34.19 0.00% 746 11 1.00 1060 2.84 1.00 1310 6.8 1.00
12 10 34.00 -0.56% 625 3.27 1.19 943 4.69 1.12 1200 4.8 1.09
12 8 34.50 0.91% 523 2.19 1.43 814 4.23 1.30 1070 5.34 1.22
12 6 33.70 -1.42% 425 1.92 1.76 652 3.39 1.63 970 4.79 1.35
12 4 31.93 -6.62% 350 1.32 2.13 510 3.1 2.08 815 2 1.61
12 2 28.05 -17.97% 202 1.41 3.69 451 2.92 2.35 762 0.911 1.72
10 12 33.57 -1.82% 710 6.2 1.05 995 2.74 1.07 1290 4.2 1.02
8 12 33.06 -3.31% 690 5.72 1.08 953 5.72 1.11 1270 4.3 1.03
6 12 32.23 -5.72% 716 8 1.04 944 7.22 1.12 1080 5.29 1.21
4 12 27.47 -19.65% 710 1.75 1.05 911 10.1 1.16 1,000 8.84 1.31
2 12 25.57 -25.22% 706 5.4 1.06 862 7.11 1.23 921 7.04 1.42
10 10 32.88 -3.82% 633 11.6 1.18 915 11 1.16 1120 5.51 1.17
8 8 32.81 -4.04% 512 4.98 1.46 737 9.78 1.44 911 4.98 1.44
6 6 28.70 -16.05% 401 3.16 1.86 572 4.73 1.85 702 1.57 1.87
4 4 26.53 -22.40% 301 2.92 2.48 415 3.01 2.55 509 0.997 2.57
2 2 19.64 -42.57% 189 1.98 3.95 312 2.88 3.40 389 0.892 3.37

Table C.16: Role of model symmetry in inference efficiency on FLAN-T5 base model on
the QIWS dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
24 24 37.37 0.00% 1430 6.08 1.00 2240 4.81 1.00 3320 1.02 1.00
24 20 37.59 0.59% 1210 4.73 1.18 1990 6.89 1.13 3010 2.63 1.10
24 16 36.56 -2.16% 1000 2.70 1.43 1750 5.92 1.28 2710 1.57 1.23
24 12 35.74 -4.36% 795 6.61 1.80 1510 10.40 1.48 2400 1.59 1.38
24 8 35.13 -5.99% 585 4.99 2.44 1260 7.14 1.78 2090 7.17 1.59
24 4 33.69 -9.85% 373 1.16 3.83 1030 10.50 2.17 1790 1.72 1.85
20 24 36.39 -2.62% 1410 3.66 1.01 2130 10.90 1.05 3090 5.98 1.07
16 24 35.90 -3.93% 1395 3.52 1.03 2060 9.89 1.09 2880 3.32 1.15
12 24 34.22 -8.42% 1380 5.20 1.04 1900 9.65 1.18 2630 0.81 1.26
8 24 33.42 -10.57% 1370 5.49 1.04 1790 19.00 1.25 2400 1.34 1.38
4 24 30.31 -18.89% 1350 7.33 1.06 1670 5.30 1.34 2170 2.79 1.53
20 20 36.32 -2.80% 1200 5.37 1.19 1880 7.89 1.19 2780 1.15 1.19
16 16 35.98 -3.71% 1020 3.49 1.40 1530 5.62 1.46 2230 1.80 1.49
12 12 33.00 -11.69% 749 5.30 1.91 1160 2.94 1.93 1710 0.89 1.94
8 8 30.78 -17.62% 650 3.32 2.20 970 2.78 2.31 1550 0.79 2.14
4 4 22.77 -39.06% 585 2.23 2.44 890 3.21 2.52 1450 0.92 2.29

Table C.17: Role of model symmetry in inference efficiency on FLAN-T5 large model on
the QIWS dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
8 8 17.55 0.00% 138 5.05 1.00 230 7.61 1.00 330 3.71 1.00
8 6 17.68 0.74% 133 0.292 1.04 211 0.425 1.09 300 0.954 1.10
8 5 17.27 -1.64% 116 0.196 1.19 193 0.448 1.19 279 0.537 1.18
8 4 16.40 -6.57% 98.1 0.242 1.41 174 0.153 1.32 259 0.424 1.27
8 2 15.35 -12.58% 63.2 0.207 2.18 137 0.1 1.68 218 0.303 1.51
8 1 11.33 -35.43% 45.7 0.106 3.02 118 0.0827 1.95 198 0.148 1.67
6 8 17.69 0.81% 166 0.303 0.83 230 1.42 1.00 303 1.06 1.09
5 8 17.35 -1.16% 165 0.267 0.84 219 0.521 1.05 283 1.13 1.17
4 8 16.80 -4.30% 164 0.185 0.84 211 0.89 1.09 265 1.85 1.25
2 8 15.54 -11.49% 162 332 0.85 191 0.332 1.20 226 625 1.46
1 8 13.31 -24.17% 161 0.626 0.86 180 0.423 1.28 206 0.55 1.60
6 6 17.07 -2.77% 131 0.617 1.05 192 0.247 1.20 261 0.768 1.26
5 5 16.20 -7.72% 113 0.306 1.22 164 0.642 1.40 220 1.36 1.50
4 4 14.91 -15.05% 95.1 0.0955 1.45 135 0.21 1.70 182 0.268 1.81
2 2 11.97 -31.83% 57.8 0.27 2.39 78.9 0.078 2.92 103 0.238 3.20
1 1 6.05 -65.55% 39.1 0.136 3.53 50.2 0.132 4.58 63.4 0.0845 5.21

Table C.18: Role of model symmetry in inference efficiency on FLAN-T5 small model on
the CNNDM dataset

C.1.7 Computational Packages

All of our experimentation is done using public libraries and datasets to ensure exten-

sibility and reproducibility. Our investigation is done using HuggingFace’s Transformers 79

79https://github.com/huggingface/transformers

177

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
12 12 19.77 0.00% 199 3.74 1.00 550 3.81 1.00 931 2.09 1.00
12 10 19.92 0.76% 179 3.31 1.11 524 16.2 1.05 889 4.41 1.05
12 8 19.85 0.42% 155 4.50 1.28 493 14 1.12 884 3.61 1.05
12 6 18.85 -4.63% 126 1.95 1.58 449 5.88 1.22 800 4.59 1.16
12 4 18.68 -5.49% 99.2 1.02 2.01 405 1.41 1.36 737 5.06 1.26
12 2 16.48 -16.62% 75.3 0.85 2.64 372 1.98 1.48 697 4.55 1.34
10 12 19.92 0.76% 198 4.75 1.01 495 14.5 1.11 811 1.18 1.15
8 12 19.67 -0.50% 196 3.72 1.02 441 7.82 1.25 715 4.39 1.30
6 12 18.85 -4.63% 187 4.81 1.06 396 13.3 1.39 613 9.45 1.52
4 12 18.22 -7.86% 183 3.54 1.09 330 5.04 1.67 509 2.1 1.83
2 12 17.06 -13.73% 176 3.52 1.13 272 1.79 2.02 400 3.25 2.33
10 10 19.72 -0.26% 171 3.21 1.16 462 11.9 1.19 776 4.62 1.20
8 8 19.17 -3.01% 141 2.97 1.41 37 12.1 14.86 628 6.48 1.48
6 6 17.46 -11.71% 109 1.71 1.83 281 2.61 1.96 478 3.55 1.95
4 4 15.87 -19.74% 82.5 1.24 2.41 198 1.71 2.78 329 0.74 2.83
2 2 12.23 -38.12% 50.7 1.30 3.93 112 2.59 4.91 178 0.557 5.23

Table C.19: Role of model symmetry in inference efficiency on FLAN-T5 base model on
the CNNDM dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
24 24 21.15 0.00% 445 2.35 1.00 1480 20.1 1.00 2700 7.22 1.00
24 20 21.30 0.69% 390 33.7 1.14 1390 4.24 1.06 2590 7.7 1.04
24 16 21.32 0.81% 335 13.9 1.33 1330 7.7 1.11 2470 7.42 1.09
24 12 21.08 -0.34% 270 3.28 1.65 1250 11 1.18 2340 6.68 1.15
24 8 20.67 -2.27% 219 8.67 2.03 1180 8.17 1.25 2220 4.25 1.22
24 4 19.49 -7.88% 165 1.81 2.70 1090 6.6 1.36 2090 9.15 1.29
20 24 21.13 -0.12% 418 13.8 1.06 1320 15.3 1.12 2400 7.26 1.13
16 24 20.83 -1.53% 421 16.8 1.06 1150 16 1.29 2080 6.07 1.30
12 24 20.53 -2.94% 391 12.5 1.14 1000 21.7 1.48 1750 8.18 1.54
8 24 19.74 -6.67% 373 13.1 1.19 882 6.92 1.68 1430 4.79 1.89
4 24 18.68 -11.69% 350 4.32 1.27 670 15 2.21 1110 3.21 2.43
20 20 21.23 0.34% 359 4.3 1.24 1240 15.3 1.19 2260 6.73 1.19
16 16 20.90 -1.19% 1289 2.5 0.35 994 21.6 1.49 1820 4.27 1.48
12 12 20.13 -4.84% 229 12.1 1.94 756 12.6 1.96 1370 4.6 1.97
8 8 18.47 -12.70% 160 31.8 2.78 513 2.55 2.88 926 7.24 2.92
4 4 15.51 -26.68% 89.7 0.588 4.96 267 2.14 5.54 479 4.3 5.64

Table C.20: Role of model symmetry in inference efficiency on FLAN-T5 LARGE model
on the CNNDM dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
8 8 11.09 0.00% 135 2.73 1.00 227 3.51 1.00 332 1.91 1.00
8 6 11.61 4.74% 108 1.70 1.25 196 1.94 1.16 303 7.95 1.10
8 5 11.43 3.12% 94.1 3.02 1.43 183 3.43 1.24 281 6.77 1.18
8 4 11.24 1.36% 82.7 2.66 1.63 168 2.33 1.35 263 2.24 1.26
8 2 10.53 -5.02% 55.8 1.72 2.42 141 1.53 1.61 234 5.01 1.42
8 1 6.03 -45.58% 41.1 0.64 3.28 124 0.414 1.83 215 4.69 1.54
6 8 11.18 0.82% 133 3.51 1.02 204 3.63 1.11 295 5.72 1.13
5 8 10.61 -4.32% 134 3.42 1.01 193 3.76 1.18 273 10.4 1.22
4 8 10.11 -8.84% 130 2.77 1.04 185 13.6 1.23 245 6.45 1.36
2 8 8.59 -22.48% 126 4.77 1.07 163 6 1.39 203 4.1 1.64
1 8 7.70 -30.57% 126 3.38 1.07 148 2.02 1.53 180 2.85 1.84
6 6 10.73 -3.24% 104 0.45 1.30 178 3.24 1.28 254 2.37 1.31
5 5 10.19 -8.04% 91.6 2.10 1.47 151 1.78 1.50 219 10.3 1.52
4 4 9.50 -14.31% 79 3.38 1.71 124 2.42 1.83 178 1.59 1.87
2 2 7.31 -34.09% 49.5 2.56 2.73 74.8 1.9 3.03 101 0.719 3.29
1 1 4.00 -63.91% 32 1.25 4.22 48.7 2.11 4.66 61.9 1.81 5.36

Table C.21: Role of model symmetry in inference efficiency on FLAN-T5 small model on
the XSUM dataset

and Datasets 80 libraries.

80https://github.com/huggingface/datasets

178

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
12 12 15.69 0.00% 205 3.81 1.00 546 8.7 1.00 917 4.72 1.00
12 10 15.27 -2.65% 171 2.79 1.20 508 6.39 1.07 876 3.02 1.05
12 8 14.91 -4.97% 150 1.32 1.37 476 2.82 1.15 830 1.08 1.10
12 6 15.40 -1.83% 129 4.33 1.59 450 9.33 1.21 789 3.73 1.16
12 4 15.19 -3.18% 101 2.16 2.03 411 5.27 1.33 744 1.71 1.23
12 2 13.73 -12.47% 76 1.76 2.70 380 3.43 1.44 706 8.13 1.30
10 12 15.92 1.47% 200 6.37 1.03 494 2.45 1.11 818 1.72 1.12
8 12 14.10 -10.09% 195 5.47 1.05 445 20.8 1.23 713 1.71 1.29
6 12 13.84 -11.79% 190 3.89 1.08 396 9.79 1.38 612 4.64 1.50
4 12 12.10 -22.88% 185 2.24 1.11 337 3.09 1.62 505 1.96 1.82
2 12 10.27 -34.53% 180 2.08 1.14 282 4.03 1.94 399 2.85 2.30
10 10 15.72 0.22% 174 4.09 1.18 475 18.5 1.15 772 1.79 1.19
8 8 14.30 -8.85% 140 1.95 1.46 373 2.21 1.46 625 1.51 1.47
6 6 12.44 -20.68% 112 1.71 1.83 290 6.77 1.88 480 3.5 1.91
4 4 10.67 -31.95% 84.2 3.75 2.43 201 1.58 2.72 330 4.43 2.78
2 2 7.74 -50.65% 51.5 3.01 3.98 112 1.02 4.88 179 0.894 5.12

Table C.22: Role of model symmetry in inference efficiency on FLAN-T5 base model on
the XSUM dataset

lenc ldec R-2 Impact BS 1 STD Speedup BS 8 STD Speedup BS 16 STD Speedup
24 24 16.34 0.00% 447 19.4 1.00 1480 23 1.00 2700 16.1 1.00
24 20 19.80 21.16% 374 4.84 1.20 1410 17.5 1.05 2580 7.52 1.05
24 16 19.30 18.09% 327 19.4 1.37 1320 8.18 1.12 2460 7.19 1.10
24 12 18.92 15.77% 272 7.91 1.64 1240 7.06 1.19 2340 7.5 1.15
24 8 17.96 9.93% 216 7.81 2.07 1170 11.4 1.26 2210 6.49 1.22
24 4 16.47 0.76% 165 3.11 2.71 1090 3.66 1.36 2080 7.17 1.30
20 24 19.43 18.88% 406 21.5 1.10 1310 11.5 1.13 2390 7.76 1.13
16 24 18.33 12.16% 412 20.3 1.08 1140 6.88 1.30 2080 7.01 1.30
12 24 16.90 3.39% 384 18.8 1.16 986 11 1.50 1750 686 1.54
8 24 14.97 -8.39% 369 8.87 1.21 822 15.5 1.80 1420 15.5 1.90
4 24 12.52 -23.37% 345 4.41 1.30 649 3.26 2.28 110 5.96 24.55
20 20 19.18 17.38% 357 11.8 1.25 1230 13.2 1.20 2260 2.16 1.19
16 16 17.56 7.43% 288 5.91 1.55 995 9.41 1.49 1820 5.33 1.48
12 12 15.89 -2.79% 217 3.09 2.06 748 3.25 1.98 1370 6.59 1.97
8 8 12.15 -25.66% 158 6.04 2.83 511 9.62 2.90 920 2.06 2.93
4 4 8.96 -45.14% 92.3 2.88 4.84 267 1.51 5.54 481 1.69 5.61

Table C.23: Role of model symmetry in inference efficiency on FLAN-T5 large model on
the XSUM dataset

179

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, pp. 84–90,
2012.

[2] T. B. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learners,”
ArXiv, vol. abs/2005.14165, 2020.

[3] W. Fedus, B. Zoph, and N. M. Shazeer, “Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity,” ArXiv, vol. abs/2101.03961,
2021.

[4] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word rep-
resentation,” in EMNLP, 2014.

[5] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed represen-
tations of words and phrases and their compositionality,” ArXiv, vol. abs/1310.4546,
2013.

[6] R. Socher, A. Perelygin, J. Wu, et al., “Recursive deep models for semantic compo-
sitionality over a sentiment treebank,” in EMNLP, 2013.

[7] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions for
machine comprehension of text,” in EMNLP, 2016.

[8] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional attention flow for
machine comprehension,” ArXiv, vol. abs/1611.01603, 2017.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in NAACL, 2019.

[10] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” 2019. [Online]. Available: https://

d4mucfpksywv.cloudfront.net/better-language-models/language-models.

pdf.

[11] C. Raffel, N. M. Shazeer, A. Roberts, et al., “Exploring the limits of transfer learning
with a unified text-to-text transformer,” ArXiv, vol. abs/1910.10683, 2020.

[12] B. Bi, C. Li, C. Wu, M. Yan, and W. Wang, “Palm: Pre-training an autoencod-
ing&autoregressive language model for context-conditioned generation,” in EMNLP,
2020.

[13] M. Nadeem, A. Bethke, and S. Reddy, “Stereoset: Measuring stereotypical bias in
pretrained language models,” in ACL, 2021.

[14] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On the dangers of
stochastic parrots: Can language models be too big?” Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, 2021.

180

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

[15] F. Petroni, T. Rocktäschel, P. Lewis, et al., “Language models as knowledge bases?”
ArXiv, vol. abs/1909.01066, 2019.

[16] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig, “How can we know what language
models know?” Transactions of the Association for Computational Linguistics, vol. 8,
pp. 423–438, 2020.

[17] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations for
modern deep learning research,” in AAAI, 2020.

[18] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations for
deep learning in nlp,” ArXiv, vol. abs/1906.02243, 2019.

[19] J. G. M. FitzGerald, S. Ananthakrishnan, K. Arkoudas, et al., “Alexa teacher model:
Pretraining and distilling multi-billion-parameter encoders for natural language un-
derstanding systems,” Proceedings of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, 2022.

[20] J. Hestness, S. Narang, N. Ardalani, et al., “Deep learning scaling is predictable,
empirically,” ArXiv, vol. abs/1712.00409, 2017.

[21] D. Hernandez, J. Kaplan, T. J. Henighan, and S. McCandlish, “Scaling laws for
transfer,” ArXiv, vol. abs/2102.01293, 2021.

[22] J. Kaplan, S. McCandlish, T. J. Henighan, et al., “Scaling laws for neural language
models,” ArXiv, vol. abs/2001.08361, 2020.

[23] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable
neural networks,” arXiv: Learning, 2019.

[24] T. Chen, J. Frankle, S. Chang, et al., “The lottery ticket hypothesis for pre-trained
bert networks,” ArXiv, vol. abs/2007.12223, 2020.

[25] E. Kurtic, D. F. Campos, T. Nguyen, et al., “The optimal bert surgeon: Scalable and
accurate second-order pruning for large language models,” ArXiv, vol. abs/2203.07259,
2022.

[26] D. F. Campos, A. Marques, T. A. D. Nguyen, M. Kurtz, and C. Zhai, “Sparse*bert:
Sparse models are robust,” ArXiv, vol. abs/2205.12452, 2022.

[27] D. F. Campos, A. Marques, M. Kurtz, and C. Zhai, “Oberta: Improving sparse trans-
fer learning via improved initialization, distillation, and pruning regimes,” ArXiv,
vol. abs/2303.17612, 2023.

[28] V. Karpukhin, B. Oğuz, S. Min, et al., “Dense passage retrieval for open-domain
question answering,” ArXiv, vol. abs/2004.04906, 2020.

[29] A. Magnani, F. Liu, S. Chaidaroon, et al., “Semantic retrieval at walmart,” Pro-
ceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2022.

[30] K. Bi, Q. Ai, and W. B. Croft, “A transformer-based embedding model for personal-
ized product search,” Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2020.

181

[31] Y. Qu, Y. Ding, J. Liu, et al., “Rocketqa: An optimized training approach to dense
passage retrieval for open-domain question answering,” in NAACL, 2021.

[32] L. Xiong, C. Xiong, Y. Li, et al., “Approximate nearest neighbor negative contrastive
learning for dense text retrieval,” ArXiv, vol. abs/2007.00808, 2021.

[33] G. Sidiropoulos and E. Kanoulas, “Analysing the robustness of dual encoders for dense
retrieval against misspellings,” Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2022.

[34] D. F. Campos, C. Zhai, and A. Magnani, “Noise-robust dense retrieval via contrastive
alignment post training,” ArXiv, vol. abs/2304.03401, 2023.

[35] D. F. Campos, A. Magnani, and C. Zhai, “Quick dense retrievers consume kale: Post
training kullback leibler alignment of embeddings for asymmetrical dual encoders,”
ArXiv, vol. abs/2304.01016, 2023.

[36] A. Vaswani, N. M. Shazeer, N. Parmar, et al., “Attention is all you need,” in NIPS,
2017.

[37] J. Zhang, Y. Zhao, M. Saleh, and P. J. Liu, “Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization,” ArXiv, vol. abs/1912.08777, 2020.

[38] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever, “Ro-
bust speech recognition via large-scale weak supervision,” ArXiv, vol. abs/2212.04356,
2022.

[39] C. Z. Daniel Campos, “To asymmetry and beyond: Structured pruning of sequence
to sequence models for improved inference efficiency,” ArXiv, vol. abs/2304.02721,
2023.

[40] S. Narayan, S. B. Cohen, and M. Lapata, “Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization,” ArXiv,
vol. abs/1808.08745, 2018.

[41] R. Nallapati, B. Zhou, C. N. dos Santos, Ç. Gülçehre, and B. Xiang, “Abstractive
text summarization using sequence-to-sequence rnns and beyond,” in CoNLL, 2016.

[42] T. Isbister, F. Carlsson, and M. Sahlgren, “Should we stop training more monolingual
models, and simply use machine translation instead?” In NODALIDA, 2021.

[43] A. Conneau, K. Khandelwal, N. Goyal, et al., “Unsupervised cross-lingual represen-
tation learning at scale,” in ACL, 2020.

[44] D. Campos, D. Perry, S. Joshi, et al., “Compressing cross-lingual multi-task models
at qualtrics,” ArXiv, vol. abs/2211.15927, 2022.

[45] M. E. Peters, M. Neumann, M. Iyyer, et al., “Deep contextualized word representa-
tions,” ArXiv, vol. abs/1802.05365, 2018.

[46] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra: Pre-training text
encoders as discriminators rather than generators,” ArXiv, vol. abs/2003.10555, 2020.

[47] J. Howard and S. Ruder, “Universal language model fine-tuning for text classifica-
tion,” in ACL, 2018.

182

[48] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language
understanding by generative pre-training,” 2018. [Online]. Available: https://cdn.
openai.com/research-covers/language-unsupervised/language_understanding_

paper.pdf.

[49] Y. Wu, M. Schuster, Z. Chen, et al., “Google’s neural machine translation system:
Bridging the gap between human and machine translation,” ArXiv, vol. abs/1609.08144,
2016.

[50] W. L. Taylor, ““cloze procedure”: A new tool for measuring readability,” Journalism
Mass Communication Quarterly, vol. 30, pp. 415–433, 1953.

[51] Y. Liu, M. Ott, N. Goyal, et al., “Roberta: A robustly optimized bert pretraining
approach,” ArXiv, vol. abs/1907.11692, 2019.

[52] Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and Q. V. Le, “Xl-
net: Generalized autoregressive pretraining for language understanding,” in NeurIPS,
2019.

[53] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov, “Transformer-
xl: Attentive language models beyond a fixed,” ArXiv, vol. abs/1901.02860, 2019.

[54] Z.-Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Al-
bert: A lite bert for self-supervised learning of language representations,” ArXiv,
vol. abs/1909.11942, 2019.

[55] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of bert:
Smaller, faster, cheaper and lighter,” ArXiv, vol. abs/1910.01108, 2019.

[56] F. Yu, D. Wang, L. Shangguan, et al., “A survey of large-scale deep learning serv-
ing system optimization: Challenges and opportunities,” ArXiv, vol. abs/2111.14247,
2021.

[57] S. Han, H. Mao, and W. J. Dally, “A deep neural network compression pipeline:
Pruning, quantization, huffman encoding,” ArXiv, 2015.

[58] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in NIPS, 1989.

[59] S. Han, H. Mao, and W. Dally, “Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding,” arXiv: Computer Vision and
Pattern Recognition, 2016.

[60] O. Kovaleva, S. Kulshreshtha, A. Rogers, and A. Rumshisky, “BERT busters: Outlier
layernorm dimensions that disrupt BERT,” CoRR, vol. abs/2105.06990, 2021. arXiv:
2105.06990. [Online]. Available: https://arxiv.org/abs/2105.06990.

[61] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolutional
neural networks for resource efficient inference,” arXiv: Learning, 2017.

[62] T. Chen, B. Ji, T. Ding, et al., “Only train once: A one-shot neural network training
and pruning framework,” in Neural Information Processing Systems, 2021.

[63] L. Miao, X. Luo, T. Chen, W. Chen, D. Liu, and Z. Wang, “Learning pruning-friendly
networks via frank-wolfe: One-shot, any-sparsity, and no retraining,” in ICLR, 2022.

183

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/2105.06990
https://arxiv.org/abs/2105.06990

[64] N. Lee, T. Ajanthan, and P. H. S. Torr, “Snip: Single-shot network pruning based on
connection sensitivity,” ArXiv, vol. abs/1810.02340, 2019.

[65] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep neural networks,”
ArXiv, vol. abs/1902.09574, 2019.

[66] V. Sanh, T. Wolf, and A. M. Rush, “Movement pruning: Adaptive sparsity by fine-
tuning,” ArXiv, vol. abs/2005.07683, 2020.

[67] B. Hassibi and D. G. Stork, Second order derivatives for network pruning: Optimal
brain surgeon. Morgan Kaufmann, 1993.

[68] S. P. Singh and D. Alistarh, “Woodfisher: Efficient second-order approximation for
neural network compression,” Advances in Neural Information Processing Systems,
vol. 33, 2020.

[69] O. Zafrir, A. Larey, G. Boudoukh, H. Shen, and M. Wasserblat, Prune once for all:
Sparse pre-trained language models, 2021. arXiv: 2111.05754 [cs.CL].

[70] P. Michel, O. Levy, and G. Neubig, “Are sixteen heads really better than one?” In
NeurIPS, 2019.

[71] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, “Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned,” in ACL,
2019.

[72] S. N. Sridhar and A. Sarah, “Undivided attention: Are intermediate layers necessary
for bert?” ArXiv, vol. abs/2012.11881, 2020.

[73] H. Sajjad, F. Dalvi, N. Durrani, and P. Nakov, “Poor man’s BERT: smaller and faster
transformer models,” CoRR, vol. abs/2004.03844, 2020. arXiv: 2004.03844. [Online].
Available: https://arxiv.org/abs/2004.03844.

[74] A. de Wynter and D. J. Perry, “Optimal subarchitecture extraction for BERT,”
CoRR, vol. abs/2010.10499, 2020. arXiv: 2010.10499. [Online]. Available: https:
//arxiv.org/abs/2010.10499.

[75] F. Lagunas, E. Charlaix, V. Sanh, and A. Rush, “Block pruning for faster transform-
ers,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, Online and Punta Cana, Dominican Republic: Association for Computa-
tional Linguistics, Nov. 2021, pp. 10 619–10 629. doi: 10.18653/v1/2021.emnlp-
main.829. [Online]. Available: https://aclanthology.org/2021.emnlp-main.829.

[76] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
ArXiv, vol. abs/1503.02531, 2015.

[77] X. Jiao, Y. Yin, L. Shang, et al., “Tinybert: Distilling bert for natural language
understanding,” ArXiv, vol. abs/1909.10351, 2020.

[78] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “Mobilebert: A compact
task-agnostic bert for resource-limited devices,” in ACL, 2020.

[79] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers,” ArXiv,
vol. abs/2002.10957, 2020.

184

https://arxiv.org/abs/2111.05754
https://arxiv.org/abs/2004.03844
https://arxiv.org/abs/2004.03844
https://arxiv.org/abs/2010.10499
https://arxiv.org/abs/2010.10499
https://arxiv.org/abs/2010.10499
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://aclanthology.org/2021.emnlp-main.829

[80] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural
networks: Training deep neural networks with weights and activations constrained to
+1 or -1,” arXiv: Learning, 2016.

[81] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat, “Q8bert: Quantized 8bit bert,”
2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing
- NeurIPS Edition (EMC2-NIPS), pp. 36–39, 2019.

[82] W. Zhang, L. Hou, Y. Yin, et al., “Ternarybert: Distillation-aware ultra-low bit bert,”
arXiv preprint arXiv:2009.12812, 2020.

[83] A. Fan, P. Stock, B. Graham, et al., “Training with quantization noise for extreme
model compression,” arXiv preprint arXiv:2004.07320, 2020.

[84] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with GPUs,”
IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547, 2019.

[85] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese
bert-networks,” ArXiv, vol. abs/1908.10084, 2019.

[86] T. Mesquita, B. Martins, and M. Almeida, “Dense template retrieval for customer
support,” in COLING, 2022.

[87] S.-C. Lin, J.-H. Yang, and J. J. Lin, “In-batch negatives for knowledge distillation
with tightly-coupled teachers for dense retrieval,” in REPL4NLP, 2021.

[88] M. Li, X. Ma, and J. Lin, “An encoder attribution analysis for dense passage re-
triever in open-domain question answering,” Proceedings of the 2nd Workshop on
Trustworthy Natural Language Processing (TrustNLP 2022), 2022.

[89] N. Thakur, N. Reimers, A. Ruckl’e, A. Srivastava, and I. Gurevych, “Beir: A heteroge-
nous benchmark for zero-shot evaluation of information retrieval models,” ArXiv,
vol. abs/2104.08663, 2021.

[90] A. Miko lajczyk and M. Grochowski, “Data augmentation for improving deep learning
in image classification problem,” 2018 International Interdisciplinary PhD Workshop
(IIPhDW), pp. 117–122, 2018.

[91] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data augmenta-
tion,” in AAAI, 2020.

[92] Y. Li, X. Li, Y. Yang, and R. Dong, “A diverse data augmentation strategy for
low-resource neural machine translation,” Inf., vol. 11, p. 255, 2020.

[93] K. Lu, P. Mardziel, F. Wu, P. Amancharla, and A. Datta, “Gender bias in neural
natural language processing,” in Logic, Language, and Security, 2020.

[94] S. Y. Feng, V. Gangal, J. Wei, et al., “A survey of data augmentation approaches for
nlp,” ArXiv, vol. abs/2105.03075, 2021.

[95] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively,
with application to face verification,” 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), vol. 1, 539–546 vol. 1, 2005.

185

[96] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering,” 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 815–823, 2015.

[97] X. Chen, J. Luo, B. He, L. Sun, and Y. Sun, “Towards robust dense retrieval via
local ranking alignment,” in International Joint Conference on Artificial Intelligence,
2022.

[98] I. Yamada, A. Asai, and H. Hajishirzi, “Efficient passage retrieval with hashing for
open-domain question answering,” ArXiv, vol. abs/2106.00882, 2021.

[99] S. Min, J. L. Boyd-Graber, C. Alberti, et al., “Neurips 2020 efficientqa competition:
Systems, analyses and lessons learned,” in NeurIPS, 2020.

[100] N. Thakur, N. Reimers, and J. Lin, “Domain adaptation for memory-efficient dense
retrieval,” ArXiv, vol. abs/2205.11498, 2022.

[101] J. Choi, E. Jung, J. Suh, and W. Rhee, “Improving bi-encoder document ranking
models with two rankers and multi-teacher distillation,” Proceedings of the 44th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, 2021.

[102] J. Hoffmann, S. Borgeaud, A. Mensch, et al., “Training compute-optimal large lan-
guage models,” ArXiv, vol. abs/2203.15556, 2022.

[103] Z. Li, E. Wallace, S. Shen, et al., “Train large, then compress: Rethinking model size
for efficient training and inference of transformers,” ArXiv, vol. abs/2002.11794, 2020.

[104] C. Na, S. V. Mehta, and E. Strubell, “Train flat, then compress: Sharpness-aware
minimization learns more compressible models,” ArXiv, vol. abs/2205.12694, 2022.

[105] J. S. Rosenfeld, J. Frankle, M. Carbin, and N. Shavit, “On the predictability of
pruning across scales,” ArXiv, vol. abs/2006.10621, 2020.

[106] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, “Sequence level training with
recurrent neural networks,” CoRR, vol. abs/1511.06732, 2015.

[107] T. Mihaylova and A. F. T. Martins, “Scheduled sampling for transformers,” in Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Linguistics:
Student Research Workshop, Florence, Italy: Association for Computational Linguis-
tics, Jul. 2019, pp. 351–356. doi: 10 . 18653 / v1 / P19 - 2049. [Online]. Available:
https://aclanthology.org/P19-2049.

[108] J. Kasai, N. Pappas, H. Peng, J. Cross, and N. A. Smith, “Deep encoder, shal-
low decoder: Reevaluating non-autoregressive machine translation,” in International
Conference on Learning Representations, 2020.

[109] Y. Tay, M. Dehghani, J. Rao, et al., “Scale efficiently: Insights from pre-training and
fine-tuning transformers,” ArXiv, vol. abs/2109.10686, 2021.

[110] S. Shleifer and A. Rush, vol. abs/2010.13002, 2020. arXiv: 2010.13002. [Online].
Available: https://arxiv.org/abs/2010.13002.

[111] F. Lagunas, E. Charlaix, V. Sanh, and A. M. Rush, “Block pruning for faster trans-
formers,” ArXiv, vol. abs/2109.04838, 2021.

186

https://doi.org/10.18653/v1/P19-2049
https://aclanthology.org/P19-2049
https://arxiv.org/abs/2010.13002
https://arxiv.org/abs/2010.13002

[112] Z. Li, Z. Wang, M. Tan, et al., “Dq-bart: Efficient sequence-to-sequence model via
joint distillation and quantization,” in Annual Meeting of the Association for Com-
putational Linguistics, 2022.

[113] T. Schuster, A. Fisch, J. Gupta, et al., “Confident adaptive language modeling,”
ArXiv, vol. abs/2207.07061, 2022.

[114] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of bert:
Smaller, faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108, 2019.

[115] J. Xin, R. Tang, J. Lee, Y. Yu, and J. J. Lin, “Deebert: Dynamic early exiting for
accelerating bert inference,” in ACL, 2020.

[116] S. Kim, S. Shen, D. Thorsley, A. Gholami, J. Hassoun, and K. Keutzer, “Learned
token pruning for transformers,” Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2021.

[117] Using deepspeed and megatron to train megatron-turing nlg 530b, the world’s largest
and most powerful generative language model, https://bit.ly/3DlbPIF/, Accessed:
2021-11-09.

[118] D. Xu, I. E.-H. Yen, J. Zhao, and Z. Xiao, “Rethinking network pruning – under the
pre-train and fine-tune paradigm,” in NAACL, 2021.

[119] NeuralMagic, Deep sparse: A fast cpu inference engine, 2021. eprint: https : / /

github.com/neuralmagic/deepsparse.

[120] E. Frantar, E. Kurtic, and D. Alistarh, “M-fac: Efficient matrix-free approximations
of second-order information,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[121] S. Shen, Z. Dong, J. Ye, et al., “Q-bert: Hessian based ultra low precision quantization
of bert,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
2020, pp. 8815–8821.

[122] S. Yu, Z. Yao, A. Gholami, et al., “Hessian-aware pruning and optimal neural im-
plant,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, 2022, pp. 3880–3891.

[123] T. Wolf, L. Debut, V. Sanh, et al., “Transformers: State-of-the-art natural language
processing,” in Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, Online: Association for Computational
Linguistics, Oct. 2020, pp. 38–45. [Online]. Available: https://www.aclweb.org/
anthology/2020.emnlp-demos.6.

[124] M. Kurtz, J. Kopinsky, R. Gelashvili, et al., “Inducing and exploiting activation spar-
sity for fast inference on deep neural networks,” in Proceedings of the 37th Interna-
tional Conference on Machine Learning, H. D. III and A. Singh, Eds., ser. Proceedings
of Machine Learning Research, vol. 119, Virtual: PMLR, 13–18 Jul 2020, pp. 5533–
5543. [Online]. Available: http://proceedings.mlr.press/v119/kurtz20a.html.

187

https://bit.ly/3DlbPIF/
https://github.com/neuralmagic/deepsparse
https://github.com/neuralmagic/deepsparse
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://proceedings.mlr.press/v119/kurtz20a.html

[125] Q. Lhoest, A. Villanova del Moral, Y. Jernite, et al., “Datasets: A community library
for natural language processing,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, Association for
Computational Linguistics, Nov. 2021, pp. 175–184.

[126] Z. Wang, W. Hamza, and R. Florian, “Bilateral multi-perspective matching for natu-
ral language sentences,” CoRR, vol. abs/1702.03814, 2017. arXiv: 1702.03814. [On-
line]. Available: http://arxiv.org/abs/1702.03814.

[127] A. Williams, N. Nangia, and S. Bowman, “A broad-coverage challenge corpus for
sentence understanding through inference,” in Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana:
Association for Computational Linguistics, 2018, pp. 1112–1122. [Online]. Available:
http://aclweb.org/anthology/N18-1101.

[128] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy of pruning
for model compression,” ArXiv, vol. abs/1710.01878, 2018.

[129] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-read students learn better:
The impact of student initialization,” ArXiv, vol. abs/1908.08962, 2019.

[130] A. Fan, E. Grave, and A. Joulin, “Reducing transformer depth on demand with
structured dropout,” arXiv preprint arXiv:1909.11556, 2019.

[131] B. Jacob, S. Kligys, B. Chen, et al., “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 2704–2713.

[132] R. Bommasani, D. A. Hudson, E. Adeli, et al., “On the opportunities and risks of
foundation models,” ArXiv, vol. abs/2108.07258, 2021.

[133] J. Lee, W. Yoon, S. Kim, et al., “Biobert: A pre-trained biomedical language repre-
sentation model for biomedical text mining,” Bioinformatics, vol. 36, pp. 1234–1240,
2020.

[134] I. Chalkidis, M. Fergadiotis, P. Malakasiotis, N. Aletras, and I. Androutsopoulos,
“Legal-bert: The muppets straight out of law school,” ArXiv, vol. abs/2010.02559,
2020.

[135] I. Beltagy, K. Lo, and A. Cohan, “Scibert: A pretrained language model for scientific
text,” in EMNLP, 2019.

[136] H. Peng, N. Pappas, D. Yogatama, R. Schwartz, N. A. Smith, and L. Kong, “Random
feature attention,” ArXiv, vol. abs/2103.02143, 2021.

[137] O. Zafrir, A. Larey, G. Boudoukh, H. Shen, and M. Wasserblat, “Prune once for all:
Sparse pre-trained language models,” ArXiv, vol. abs/2111.05754, 2021.

[138] E. Kurtić, D. F. Campos, T. Nguyen, et al., “The optimal bert surgeon: Scalable and
accurate second-order pruning for large language models,” ArXiv, vol. abs/2203.07259,
2022.

188

https://arxiv.org/abs/1702.03814
http://arxiv.org/abs/1702.03814
http://aclweb.org/anthology/N18-1101

[139] C.-F. Chen, Q. Fan, and R. Panda, “Crossvit: Cross-attention multi-scale vision trans-
former for image classification,” 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 347–356, 2021.

[140] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lucic, and C. Schmid, “Vivit: A
video vision transformer,” 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 6816–6826, 2021.

[141] O. Kovaleva, S. Kulshreshtha, A. Rogers, and A. Rumshisky, “Bert busters: Outlier
dimensions that disrupt transformers,” in FINDINGS, 2021.

[142] M. A. Gordon, K. Duh, and N. Andrews, “Compressing bert: Studying the effects of
weight pruning on transfer learning,” in Workshop on Representation Learning for
NLP, 2020.

[143] W. Foundation, Wikimedia downloads, 2021. [Online]. Available: https://dumps.
wikimedia.org.

[144] Y. Zhu, R. Kiros, R. Zemel, et al., “Aligning books and movies: Towards story-like vi-
sual explanations by watching movies and reading books,” in The IEEE International
Conference on Computer Vision (ICCV), Dec. 2015.

[145] Y. Gu, R. Tinn, H. Cheng, et al., “Domain-specific language model pretraining
for biomedical natural language processing,” ACM Transactions on Computing for
Healthcare (HEALTH), vol. 3, pp. 1–23, 2022.

[146] K. R. Kanakarajan, B. Kundumani, and M. Sankarasubbu, “Bioelectra:pretrained
biomedical text encoder using discriminators,” in BIONLP, 2021.

[147] L. L. Smith, L. K. Tanabe, R. J. nee Ando, et al., “Overview of biocreative ii gene
mention recognition,” Genome Biology, vol. 9, S2–S2, 2008.

[148] J. Li, Y. Sun, R. J. Johnson, et al., “Biocreative v cdr task corpus: A resource for
chemical disease relation extraction,” Database: The Journal of Biological Databases
and Curation, vol. 2016, 2016.

[149] N. Collier and J.-D. Kim, “Introduction to the bio-entity recognition task at jnlpba,”
in NLPBA/BioNLP, 2004.

[150] R. I. Dogan, R. Leaman, and Z. Lu, “Ncbi disease corpus: A resource for disease name
recognition and concept normalization,” Journal of biomedical informatics, vol. 47,
pp. 1–10, 2014.

[151] O. Taboureau, S. K. Nielsen, K. Audouze, et al., “Chemprot: A disease chemical
biology database,” Nucleic Acids Research, vol. 39, pp. D367–D372, 2011.

[152] M. Herrero-Zazo, I. Segura-Bedmar, P. Mart́ınez, and T. Declerck, “The ddi corpus:
An annotated corpus with pharmacological substances and drug-drug interactions,”
Journal of biomedical informatics, vol. 46 5, pp. 914–20, 2013.

[153] K. G. Becker, K. C. Barnes, T. J. Bright, and S. A. Wang, “The genetic association
database,” Nature Genetics, vol. 36, pp. 431–432, 2004.

[154] S. Baker, I. Silins, Y. Guo, et al., “Automatic semantic classification of scientific
literature according to the hallmarks of cancer,” Bioinformatics, vol. 32 3, pp. 432–
40, 2016.

189

https://dumps.wikimedia.org
https://dumps.wikimedia.org

[155] Q. Jin, B. Dhingra, Z. Liu, W. W. Cohen, and X. Lu, “Pubmedqa: A dataset for
biomedical research question answering,” in EMNLP, 2019.

[156] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100, 000+ questions for
machine comprehension of text,” in EMNLP, 2016.

[157] E. Iofinova, A. Peste, M. Kurtz, and D. Alistarh, “How well do sparse imagenet models
transfer?” 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 12 256–12 266, 2021.

[158] H. Pouransari and O. Tuzel, “Least squares binary quantization of neural networks,”
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pp. 2986–2996, 2020.

[159] E. Kurtic and D. Alistarh, “Gmp*: Well-tuned global magnitude pruning can out-
perform most bert-pruning methods,” ArXiv, vol. abs/2210.06384, 2022.

[160] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unanswerable ques-
tions for squad,” in Annual Meeting of the Association for Computational Linguistics,
2018.

[161] R. Socher, A. Perelygin, J. Wu, et al., “Recursive deep models for semantic com-
positionality over a sentiment treebank,” in Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, Seattle, Washington, USA: Asso-
ciation for Computational Linguistics, Oct. 2013, pp. 1631–1642. [Online]. Available:
https://www.aclweb.org/anthology/D13-1170.

[162] SambitSekhar, First quora dataset release: Question pairs, Feb. 2017. [Online]. Avail-
able: https://www.kaggle.com/datasets/sambit7/first-quora-dataset.

[163] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning
word vectors for sentiment analysis,” in Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, Portland,
Oregon, USA: Association for Computational Linguistics, Jun. 2011, pp. 142–150.
[Online]. Available: http://www.aclweb.org/anthology/P11-1015.

[164] E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition,” in Proceedings of the Seventh
Conference on Natural Language Learning at HLT-NAACL 2003, 2003, pp. 142–147.
[Online]. Available: https://www.aclweb.org/anthology/W03-0419.

[165] T. Kwiatkowski, J. Palomaki, O. Redfield, et al., “Natural questions: A benchmark
for question answering research,” Transactions of the Association for Computational
Linguistics, vol. 7, pp. 453–466, 2019.

[166] M. Li and J. J. Lin, “Encoder adaptation of dense passage retrieval for open-domain
question answering,” ArXiv, vol. abs/2110.01599, 2021.

[167] L. Gao, X. Ma, J. J. Lin, and J. Callan, “Tevatron: An efficient and flexible toolkit
for dense retrieval,” ArXiv, vol. abs/2203.05765, 2022.

[168] D. F. Campos, T. Nguyen, M. Rosenberg, et al., “Ms marco: A human generated
machine reading comprehension dataset,” ArXiv, vol. abs/1611.09268, 2016.

190

https://www.aclweb.org/anthology/D13-1170
https://www.kaggle.com/datasets/sambit7/first-quora-dataset
http://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/W03-0419

[169] D. Wadden, S. Lin, K. Lo, et al., “Fact or fiction: Verifying scientific claims,” in
EMNLP, 2020.

[170] M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer, “Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension,” in ACL, 2017.

[171] D. Oh, Y. Kim, H. Lee, H. Huang, and H.-J. Lim, “Don’t judge a language model
by its last layer: Contrastive learning with layer-wise attention pooling,” ArXiv,
vol. abs/2209.05972, 2022.

[172] T. Nguyen, M. Rosenberg, X. Song, et al., “Ms marco: A human generated machine
reading comprehension dataset,” arXiv preprint arXiv:1611.09268, 2016.

[173] S. Zhuang and G. Zuccon, “Dealing with typos for BERT-based passage retrieval and
ranking,” in Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, Online and Punta Cana, Dominican Republic: Association for
Computational Linguistics, Nov. 2021, pp. 2836–2842. doi: 10.18653/v1/2021.

emnlp-main.225. [Online]. Available: https://aclanthology.org/2021.emnlp-
main.225.

[174] O. Khattab and M. A. Zaharia, “Colbert: Efficient and effective passage search via
contextualized late interaction over bert,” Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval, 2020.

[175] C. Wu, R. Zhang, J. Guo, Y. Fan, and X. Cheng, “Are neural ranking models robust?”
ACM Transactions on Information Systems (TOIS), 2021.

[176] G. Penha, A. Câmara, and C. Hauff, “Evaluating the robustness of retrieval pipelines
with query variation generators,” in European Conference on Information Retrieval,
2021.

[177] G. Sidiropoulos, S. Vakulenko, and E. Kanoulas, “On the impact of speech recognition
errors in passage retrieval for spoken question answering,” Proceedings of the 31st
ACM International Conference on Information & Knowledge Management, 2022.

[178] S. Zhuang and G. Zuccon, “Characterbert and self-teaching for improving the robust-
ness of dense retrievers on queries with typos,” Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
2022.

[179] K. Mao, Z. Dou, and H. Qian, “Curriculum contrastive context denoising for few-shot
conversational dense retrieval,” Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2022.

[180] S. Hofstätter, S.-C. Lin, J.-H. Yang, J. J. Lin, and A. Hanbury, “Efficiently teaching
an effective dense retriever with balanced topic aware sampling,” Proceedings of the
44th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, 2021.

[181] S. Bird, E. Klein, and E. Loper, Natural language processing with Python: analyzing
text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

[182] C. D. Fellbaum, “Wordnet : An electronic lexical database,” Language, vol. 76, p. 706,
2000.

191

https://doi.org/10.18653/v1/2021.emnlp-main.225
https://doi.org/10.18653/v1/2021.emnlp-main.225
https://aclanthology.org/2021.emnlp-main.225
https://aclanthology.org/2021.emnlp-main.225

[183] Y. Zhang, J. Baldridge, and L. He, “Paws: Paraphrase adversaries from word scram-
bling,” ArXiv, vol. abs/1904.01130, 2019.

[184] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush, “OpenNMT: Open-source
toolkit for neural machine translation,” in Proceedings of ACL 2017, System Demon-
strations, Vancouver, Canada: Association for Computational Linguistics, Jul. 2017,
pp. 67–72. [Online]. Available: https://www.aclweb.org/anthology/P17-4012.

[185] N. Craswell, D. Campos, B. Mitra, E. Yilmaz, and B. Billerbeck, “Orcas: 18 million
clicked query-document pairs for analyzing search,” in CIKM 2020, 2020.

[186] H. Zhang, X. Song, C. Xiong, et al., “Generic intent representation in web search,”
Proceedings of the 42nd International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, 2019.

[187] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman, “Glue: A multi-task
benchmark and analysis platform for natural language understanding,” in Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, 2018, pp. 353–355.

[188] S. Smith, M. Patwary, B. Norick, et al., “Using deepspeed and megatron to train
megatron-turing nlg 530b, a large-scale generative language model,” arXiv preprint
arXiv:2201.11990, 2022.

[189] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidi-
rectional transformers for language understanding,” in Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 4171–4186. doi:
10.18653/v1/N19-1423. [Online]. Available: https://aclanthology.org/N19-
1423.

[190] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers,” arXiv
preprint arXiv:2002.10957, 2020.

[191] W. Wang, H. Bao, S. Huang, L. Dong, and F. Wei, “Minilmv2: Multi-head self-
attention relation distillation for compressing pretrained transformers,” arXiv preprint
arXiv:2012.15828, 2020.

[192] S. Mukherjee, A. H. Awadallah, and J. Gao, “Xtremedistiltransformers: Task transfer
for task-agnostic distillation,” arXiv preprint arXiv:2106.04563, 2021.

[193] X. Jiao, Y. Yin, L. Shang, et al., “Lightmbert: A simple yet effective method for
multilingual bert distillation,” arXiv preprint arXiv:2103.06418, 2021.

[194] X. Jiao, Y. Yin, L. Shang, et al., “Tinybert: Distilling bert for natural language un-
derstanding,” in Findings of the Association for Computational Linguistics: EMNLP
2020, 2020, pp. 4163–4174.

[195] A. de Wynter and D. J. Perry, “Optimal subarchitecture extraction for bert,” arXiv
preprint arXiv:2010.10499, 2020.

192

https://www.aclweb.org/anthology/P17-4012
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423

[196] Z. Yang, L. Shou, M. Gong, W. Lin, and D. Jiang, “Model compression with multi-
task knowledge distillation for web-scale question answering system,” arXiv preprint
arXiv:1904.09636, 2019.

[197] G. Lample and A. Conneau, “Cross-lingual language model pretraining,” CoRR,
vol. abs/1901.07291, 2019. arXiv: 1901.07291. [Online]. Available: http://arxiv.
org/abs/1901.07291.

[198] A. Conneau, K. Khandelwal, N. Goyal, et al., “Unsupervised cross-lingual represen-
tation learning at scale,” in Annual Meeting of the Association for Computational
Linguistics, 2019.

[199] Y. Liu, M. Ott, N. Goyal, et al., Roberta: A robustly optimized bert pretraining ap-
proach, 2019. doi: 10.48550/ARXIV.1907.11692. [Online]. Available: https://
arxiv.org/abs/1907.11692.

[200] Y. Lin, S. Yang, V. Stoyanov, and H. Ji, “A multi-lingual multi-task architecture
for low-resource sequence labeling,” in Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), 2018, pp. 799–
809.

[201] P. Vijayaraghavan, S. Vosoughi, and D. Roy, “Twitter demographic classification us-
ing deep multi-modal multi-task learning,” in Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), 2017,
pp. 478–483.

[202] R. He, W. S. Lee, H. T. Ng, and D. Dahlmeier, “An interactive multi-task learning net-
work for end-to-end aspect-based sentiment analysis,” arXiv preprint arXiv:1906.06906,
2019.

[203] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, 2015.

[204] S. Mukherjee and A. H. Awadallah, “Xtremedistil: Multi-stage distillation for massive
multilingual models,” in Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, 2020, pp. 2221–2234.

[205] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat, “Q8BERT: quantized 8bit
BERT,” CoRR, vol. abs/1910.06188, 2019. arXiv: 1910.06188. [Online]. Available:
http://arxiv.org/abs/1910.06188.

[206] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing Systems 32, H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds.,
Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.
neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-

deep-learning-library.pdf.

[207] T. Wolf, L. Debut, V. Sanh, et al., “Huggingface’s transformers: State-of-the-art nat-
ural language processing,” arXiv preprint arXiv:1910.03771, 2019.

[208] S. P. Singh and D. Alistarh, Woodfisher: Efficient second-order approximation for
neural network compression, 2020. arXiv: 2004.14340 [cs.LG].

193

https://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291
http://arxiv.org/abs/1901.07291
https://doi.org/10.48550/ARXIV.1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1910.06188
http://arxiv.org/abs/1910.06188
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2004.14340

[209] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” CoRR, vol. abs/1409.3215, 2014. arXiv: 1409.3215. [Online]. Available:
http://arxiv.org/abs/1409.3215.

[210] T. J. Henighan, J. Kaplan, M. Katz, et al., “Scaling laws for autoregressive generative
modeling,” ArXiv, vol. abs/2010.14701, 2020.

[211] O. Neumann and C. Gros, “Scaling laws for a multi-agent reinforcement learning
model,” ArXiv, vol. abs/2210.00849, 2022.

[212] M. Lewis, Y. Liu, N. Goyal, et al., “Bart: Denoising sequence-to-sequence pre-training
for natural language generation,” ArXiv, vol. abs/1910.13461, 2019.

[213] R. Nogueira, Z. Jiang, R. Pradeep, and J. Lin, “Document ranking with a pretrained
sequence-to-sequence model,” in Findings of the Association for Computational Lin-
guistics: EMNLP 2020, Online: Association for Computational Linguistics, Nov. 2020,
pp. 708–718. doi: 10.18653/v1/2020.findings-emnlp.63. [Online]. Available:
https://aclanthology.org/2020.findings-emnlp.63.

[214] J. Wei, M. Bosma, V. Zhao, et al., “Finetuned language models are zero-shot learn-
ers,” ArXiv, vol. abs/2109.01652, 2021.

[215] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization with pointer-
generator networks,” in Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Vancouver, Canada: Association
for Computational Linguistics, Jul. 2017, pp. 1073–1083. doi: 10.18653/v1/P17-
1099. [Online]. Available: https://www.aclweb.org/anthology/P17-1099.

[216] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in Text
Summarization Branches Out, Barcelona, Spain: Association for Computational Lin-
guistics, Jul. 2004, pp. 74–81. [Online]. Available: https://aclanthology.org/W04-
1013.

[217] K. Yang, V. Yao, J. DeNero, and D. Klein, “A streaming approach for efficient batched
beam search,” in Conference on Empirical Methods in Natural Language Processing,
2020.

[218] S. Mukherjee, A. Mitra, G. Jawahar, S. Agarwal, H. Palangi, and A. H. Awadal-
lah, “Orca: Progressive learning from complex explanation traces of gpt-4,” ArXiv,
vol. abs/2306.02707, 2023.

[219] T. Formal, B. Piwowarski, and S. Clinchant, “Splade: Sparse lexical and expansion
model for first stage ranking,” in Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. New York, NY,
USA: Association for Computing Machinery, 2021, pp. 2288–2292, isbn: 9781450380379.
[Online]. Available: https://doi.org/10.1145/3404835.3463098.

[220] A. Overwijk, C. Xiong, and J. Callan, “Clueweb22: 10 billion web documents with
rich information,” Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2022.

[221] X. Yu, G. Li, C. Chai, and N. Tang, “Reinforcement learning with tree-lstm for join
order selection,” in 2020 IEEE 36th International Conference on Data Engineering
(ICDE), 2020, pp. 1297–1308. doi: 10.1109/ICDE48307.2020.00116.

194

https://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://doi.org/10.18653/v1/2020.findings-emnlp.63
https://aclanthology.org/2020.findings-emnlp.63
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://www.aclweb.org/anthology/P17-1099
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1109/ICDE48307.2020.00116

[222] R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn, “Direct
preference optimization: Your language model is secretly a reward model,” ArXiv,
vol. abs/2305.18290, 2023.

[223] A. Ouared and F. Z. Kharroubi, “Moving database cost models from darkness to
light,” in Smart Applications and Data Analysis: Third International Conference,
SADASC 2020, Marrakesh, Morocco, June 25–26, 2020, Proceedings 3, Springer,
2020, pp. 17–32.

[224] S. Kim, S. Shen, D. Thorsley, et al., “Learned token pruning for transformers,” in
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, ser. KDD ’22, Association for Computing Machinery, 2022, pp. 784–794, isbn:
9781450393850.

[225] L. Weijie, Z. Peng, Z. Zhe, W. Zhiruo, D. Haotang, and J. Qi, “Fastbert: A self-
distilling bert with adaptive inference time,” in Proceedings of ACL 2020, 2020.

[226] Y. Zhu, R. Kiros, R. S. Zemel, et al., “Aligning books and movies: Towards story-like
visual explanations by watching movies and reading books,” 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 19–27, 2015.

[227] A. Conneau, K. Khandelwal, N. Goyal, et al., Unsupervised cross-lingual representa-
tion learning at scale, 2019. doi: 10.48550/ARXIV.1911.02116. [Online]. Available:
https://arxiv.org/abs/1911.02116.

195

https://doi.org/10.48550/ARXIV.1911.02116
https://arxiv.org/abs/1911.02116

	CHAPTER 1 INTRODUCTION
	Background
	Motivation
	Thesis Contributions
	Introducing and Transferring Sparsity For Efficient Inference
	Robust and Efficient Semantic Retrieval
	Scaling Multi-Lingual Classification and Abstractive Summarization to Web-Scale workloads

	Document Structure Overview

	CHAPTER 2 LITERATURE REVIEW
	Overview
	Language Models
	What Is Language Modeling and Why Is It Useful
	Transformers
	BERT
	Beyond BERT
	Relation To Thesis

	Model Compression
	Iterative Compression
	Pruning
	Knowledge Distillation
	Quantization
	Relation To Thesis

	Neural Methods For Information Retrieval
	Bi-Encoders
	Cross-Encoders
	Training Methods
	Compressing Bi-encoders
	Relation To Thesis

	Sequence to Sequence Modeling
	Scaling Laws
	Asymmetrical Sequence To Sequence Modeling
	Compressing Sequence To Sequence
	Relation To Thesis

	CHAPTER 3 INTRODUCING AND TRANSFERRING SPARSITY FOR EFFICIENT AUTO-ENCODER INFERENCE
	Overview
	The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning For Large Language Models
	Overview
	Introduction
	Background and Related Work
	The Optimal BERT Surgeon (oBERT)
	Generalized Second-Order Block Pruning
	An Efficient Implementation
	Memory and Run-Time Complexity
	Efficient and Scalable Implementation
	Experimental Validation
	Downstream Unstructured Pruning
	Upstream Unstructured Pruning
	Compound Compression For CPUs
	Discussion
	Broader Impact
	Limitations

	Sparse*BERT: Sparse Models Generalize To New Tasks and Domains
	Overview
	Introduction
	Background and Related Work
	Sparse*BERT: General Sparse Models Can Adapt to New Domains
	Experiments
	Datasets
	Finetuning Datasets
	Models and Experimental Setup
	Experimental Results
	Impact of Training Data Size
	Limitations
	Conclusion

	oBERTa: Improving Sparse Transfer Learning Via Improved Initialization, Distillation, and Pruning Regimes
	Overview
	Introduction
	Background and Related Work
	Improving Sparse Transfer Learning
	Downstream Compression
	Upstream Compression
	Experimental Results
	Inference Benchmark
	Discussion and Conclusion

	Conclusion and Key Takeaways

	CHAPTER 4 ROBUST AND EFFICIENT SEMANTIC RETRIEVAL
	Overview
	Quick Dense Retrievers Consume KALE: Post Training Kullback Leibler Alignment Of Embeddings For Asymmetrical Dual Encoders
	Overview
	Introduction
	Method
	Role of Model Symmetry With Bi-Encoders
	Inference Benchmarks
	KL Alignment of Embeddings
	Experimental Results
	Discussion
	Conclusion and Future Work

	Noise-Robust Dense Retrieval Via Contrastive Alignment Post Training
	Overview
	Introduction
	Generating Noisy Queries
	Baseline Performance
	Incorporating Noise By Aligning Representations
	Motivation
	CAPOT
	Experimental Approach
	Experimental Results

	Expanding Contrastive Alignment
	Discussion
	Summary and Future Work

	Conclusion and Key Takeaways

	CHAPTER 5 SCALING MULTI-LINGUAL CLASSIFICATION AND ABSTRACTIVE SUMMARIZATION TO WEB-SCALE WORKLOADS
	Overview
	Compressing Cross-Lingual Multi-task Models at Qualtrics
	Overview
	Introduction
	The Tension Between Model Consolidation and Compression
	Cross-Lingual Multi-Task (XLMT) Model Compression Methods
	Cross-lingual Modeling
	Multi-task Learning for NLP
	Model Compression
	Experimental Results
	Dataset and Compressed Architecture Selection
	Cross-Lingual Model Results
	Cross-Lingual Multi-Task (XLMT) Model Results
	Compressed XLMT Model Results
	Distilled XLMT Model Results
	Business Impact
	Feature impact
	Financial impact
	Ethical impact
	Operational Impact and Robustness
	Conclusion

	To Asymmetry and Beyond: Structured Pruning of Sequence to Sequence Models For Improved Inference Efficiency
	Overview
	Introduction
	Scale and Abstractive Summarization
	Scaling Laws for Abstract Summarization
	Inference Benchmark
	To Asymmetry and Beyond
	Scale and Pruning
	Inference Benchmarks

	Discussion
	Scale, Inference, and Pruning
	Scale, Pruning and Generated Length
	Asymmetry Meet Large Batches
	Conclusion and Future Work

	Conclusion and Key Takeaways

	CHAPTER 6 CONCLUSION
	Overview
	Train Large Then Compress
	Web Scale Deployments Are All About Trade-offs
	Compression Approaches Are Additive and Adaptable
	Representation Alignment Is Crucial
	Limitations
	Future Work
	Publications

	APPENDIX A INTRODUCING AND TRANSFERRING SPARSITY FOR EFFICIENT INFERENCE
	The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models
	Additional Comparisons
	Optimal BERT Surgeon (oBERT) Hyper-Parameters
	Downstream Pruning
	Upstream Pruning
	Downstream Quantization
	Additional performance metrics
	Inference speedups and compression ratios of compressed models
	Responsible NLP Research - Reproducibility Checklist
	Computational Experiments
	Computational Packages

	oBERTa: Improving Sparse Transfer Learning Via Improved Initialization, Distillation, and Pruning Regimes
	Model Generation Approach
	Roberta and Training Methodology
	Model Details
	Dataset Details
	Teacher Models
	Upstream Pruning
	Sparse Transfer Hyper-Parameters
	Learning Rate
	Knowledge Distillation
	Freezing Embeddings
	Inference Benchmarks
	Limitations
	Responsible NLP Research - Reproducibility Checklist
	Computational Experiments
	Computational Packages

	APPENDIX B ROBUST AND EFFICIENT SEMANTIC RETRIEVAL
	Quick Dense Retrievers Consume KALE: Post Training Kullback Leibler Alignment of Embeddings for Asymmetrical Dual Encoders
	Asymmetrical Dense Retrieval
	Dense Retrieval and KALE Hyperparameters
	KALE
	KALE and Asymmetric Training
	Inference Benchmarks

	Noise-Robust Dense Retrieval via Contrastive Alignment Post Training
	Training HyperParameters
	Unaltered Bi-encoder With Noise

	APPENDIX C SCALING MULTI-LINGUAL CLASSIFICATION AND ABSTRACTIVE SUMMARIZATION TO WEB-SCALE WORKLOADS
	To Asymmetry and Beyond: Structured Pruning of Sequence to Sequence Models for Improved Inference Efficiency
	Training Details
	Scale and Abstractive Summarization
	Asymmetry In Summarization
	Inference Benchmarks
	Responsible NLP Research - Reproducibility Checklist
	Computational Experiments
	Computational Packages

	REFERENCES

